USER MANUAL

DMC-40x0

Manual Rev. 1.0n

Galil Motion Control, Inc.

270 Technology Way
Rocklin, California

916.626.0101
support@galilmc.com

galil.com

01/2014

Using This Manual

This user manual provides information for proper operation of the DMC-40x0 controller. A separate supplemental
manual, the Command Reference, contains a description of the commands available for use with this controller. It
is recommended that the user download the latest version of the Command Reference and User Manual from the
Galil Website.

http://www.galilmc.com/support/manuals.php

Your DMC-40x0 motion controller has been designed to work with both servo and stepper type motors.
Installation and system setup will vary depending upon whether the controller will be used with stepper motors or
servo motors. To make finding the appropriate instructions faster and easier, icons will be next to any information
that applies exclusively to one type of system. Otherwise, assume that the instructions apply to all types of
systems. The icon legend is shown below.

@ Attention: Pertains to servo motor use.

Attention: Pertains to stepper motor use.

4080 Attention: Pertains to controllers with more than 4 axes.

Please note that many examples are written for the DMC-4040 four-axes controller or the DMC-4080 eight axes
controller. Users of the DMC-4030 3-axis controller, DMC-4020 2-axes controller or DMC-4010 1-axis controller
should note that the DMC-4030 uses the axes denoted as ABC, the DMC-4020 uses the axes denoted as AB, and the
DMC-4010 uses the A-axis only.

Examples for the DMC-4080 denote the axes as A,B,C,D,E,F,G,H. Users of the DMC-4050 5-axes controller. DMC-
4060 6-axes controller or DMC-4070, 7-axes controller should note that the DMC-4050 denotes the axes as
A,B,C,D,E, the DMC-4060 denotes the axes as A,B,C,D,E,F and the DMC-4070 denotes the axes as A,B,C,D,E,FG. The
axes A,B,C,D may be used interchangeably with X, Y, Z, W.

Machinery in motion can be dangerous!
It is the responsibility of the user to design effective error handling and safety protection as
part of the machinery. Galil shall not be liable or responsible for any incidental or
consequential damages

WARNING

DMC-40x0 Contents = ii

http://www.galilmc.com/support/manuals.php

Contents

Contents

Chapter 2 Getting Started

Chapter 1 Overview

Introduction
Part Numbers....
Overview of Motor Types.
Overview of External Amplifiers....

Galil Internal Amplifiers and Drivers
FUNCLiONal El@MENES. c.viuiieiiiiiiiiiiiiiiiieeiei i

o oy 1IN =

I~

10

Power Connections.
Dimensions

Elements You Need
Installing the DMC, Amplifiers, and Motors..

Chapter 3 Connecting Hardware

32

Overview,
Overview of Optoisolated Inputs..
Optoisolated Input Electrical Information.
High Power Optoisolated Outputs
TTL Inputs and Outputs.
Analog Inputs
Extended 1/O.
External Amplifier Interface.

Chapter 4 Software Tools and Communication

Chapter 5 Command Basics

49

Introduction

Controller Response to Commands.............

Unsolicited Messages Generated by Controller..
Serial Communication Ports

Ethernet Configuration..
Modbus
Data Record...
GalilSuite (Windows and Linux)
Creating Custom Software Interfaces..

64

Introduction...
Command Syntax - ASCII
Controller Response to DATA..
Interrogating the Controller....

Chapter 6 Programming Motion

68

Overview,
Independent Axis Positioning.
Independent Jogging..
Position Tracking.
Linear Interpolation Mode
Vector Mode: Linear and Circular Interpolation Motion.

Electronic Gearing,
Electronic Cam

PVT Mode
Contour Mode
Virtual Axis
Stepper Motor Operation
Stepper Position Maintenance Mode (SPM) .
Dual Loop (AUXiliary ENCOAEI). cucuiurieieiiitieiiiitiiiieicss i

DMC-40x0

Contents = iii

Motion Smoothing .
Homing
High Speed Position Capture (The Latch FUNCHION) t.voveeieieeieiiiiiiiiiiiiien 113

Chapter 7 Application Programming

114

Overview
Program Format..
Executing Programs - Multitasking
Debugging Programs
Program Flow Commands........

Mathematical and Functional Expressions
Variables....
Operands
Arrays.....
Input of Data (Numeric and String
Output of Data (Numeric and String)
Hardware 1/0....cccceiiiiiiiiiee,
Extended 1/0 of the DMC-40x0 Controller
Example ApplicationsS.......c.ocoeeveeeerieienenn.
Using the DMC Editor to Enter Programs,

Chapter 8 Hardware & Software Protection

159

Introduction.....
Hardware Protection.. .
SOftWare ProteCtioN. . oueeeeeiieriiieiiiiiiiiiiiiiiiiiiiiieiiiii i 160

Chapter 9 Troubleshooting

164

OVOIVIBW. .ot 164

Chapter 10 Theory of Operation

167

Overview.
Operation of Closed-Loop Systems...
System Modeling....
System Analysis.
System Design and COMPeNSatioN...uueeriieriiieiiieriiiiiiiiiiiiiieiieiiiieiiieee

Appendices

179

Electrical Specifications
Performance Specifications.
Fast Update Rate Mode ...
Ordering Options.

Power Connector Part Numbers
Input Current Limitations...
Serial Cable Connections
Configuring the Amplifier Enable Circuit.
Signal Descriptions.
List of Other Publications.
Training Seminars
Contacting Us...
WARRANTY...

Integrated Components

210

OVEOIVIOW..oiouiieeiieiiiiiiiiiiiiiiiiiiiiiiii i 210

Al - AMP-430x0 (-D3040,-D3020)

212

Description.............
Electrical Specifications
Operation

Error Monitoring and Protection...

A2 — AMP-43140 (-D3140)

218

Description.............
Electrical Specifications.
Operation

A3 — AMP-43240 (-D3240)

221

DMC-40x0

Contents = iv

Description.............
Electrical Specifications
Operation

Error Monitoring and Protection...

A4 — AMP-435x0 (-D3540,-D3520)

227

Description.............

Electrical Specifications.
Operation
Error Monitoring and ProteCtion........eeweiieeieiiiiieiiiiiiieiieiie i 232

A5 — AMP-43640 (-D3640)

234

Introduction

Electrical Specifications.... .
OPEratiON. e

A6 — SDM-440x0 (-D4040,-D4020)

240

Description

Electrical Specifications.
OPEIAtION. e

A7 — SDM-44140 (-D4140)

244

Description.............
Electrical Specifications
Operation

Error Monitoring and Protection...

A8 - CMB-41012 (-C012)

248

Description............. i 248
Connectors for CMB-41012 Interconnect Boardcoceeveeeieniiiiiiiiiiiiiiiiiiiiiiiieeiice 249

A9 - CMB-41022 (-C022)

252

Description.............
Connectors for CMB-41012 Interconnect Board .

A10 —1CM-42000 (-1000)

257

Description.............
Connectors for ICM-42000 Interconnect Board

Al11 —1CM-42100 (-1100)

261

Description.............
Connectors for ICM-42100 Interconnect Board...
Theory of Operation

A12 —1CM-42200 (-1200)

267

DESCrIPtION. e 267
Connectors for ICM-42200 Interconnect BOard.......ooeuieieiiiiieieiiiiiiiiiiiieiiieiieiiieee 268

DMC-40x0

Contents = v

Chapter 1 Overview

Introduction

The DMC-40x0 Series are Galil’s highest performance stand-alone controller. The controller series offers many
enhanced features including high speed communications, non-volatile program memory, faster encoder speeds,
and improved cabling for EMI reduction.

Each DMC-40x0 provides two communication channels: high speed RS-232 (2 channels up to 115K Baud) and 100
BaseT Ethernet. The controllers allow for high-speed servo control up to 22 million encoder counts/sec and step
motor control up to 6 million steps per second. Sample rates as low as 31.25 psec per axis are available.

A Flash EEPROM provides non-volatile memory for storing application programs, parameters, arrays and firmware.
New firmware revisions are easily upgraded in the field.

The DMC-40x0 is available with up to eight axes in a single stand alone unit. The DMC-4010, 4020, 4030, 4040 are
one thru four axes controllers and the DMC-4050, 4060, 4070, 4080 are five thru eight axes controllers. All eight
axes have the ability to use Galil’s integrated amplifiers or drivers and connections for integrating external devices.

Designed to solve complex motion problems, the DMC-40x0 can be used for applications involving jogging, point-
to-point positioning, vector positioning, electronic gearing, multiple move sequences, contouring and a PVT Mode.
The controller eliminates jerk by programmable acceleration and deceleration with profile smoothing. For smooth
following of complex contours, the DMC-40x0 provides continuous vector feed of an infinite number of linear and
arc segments. The controller also features electronic gearing with multiple master axes as well as gantry mode
operation.

For synchronization with outside events, the DMC-40x0 provides uncommitted I/0, including 8 optoisolated digital
inputs (16 inputs for DMC-4050 thru DMC-4080), 8 high power optically isolated outputs (16 outputs for DMC-4050
thru DMC-4080), and 8 analog inputs for interface to joysticks, sensors, and pressure transducers. The DMC-40x0
also has an additional 32 /0O at 3.3V logic. Further 1/0 is available if the auxiliary encoders are not being used (2
inputs / each axis). Dedicated optoisolated inputs are provided for forward and reverse limits, abort, home, and
definable input interrupts.

Commands are sent in ASCIl. Additional software is available for automatic-tuning, trajectory viewing on a PC
screen, and program development using many environments such as Visual Basic, C, C++ etc. Drivers for Windows
XP, Vista and 7 (32 & 64 bit) as well as Linux are available.

Chapter 1 Overview = 6 DMC-40x0 User Manual

Part Numbers

The DMC-40x0 is modular by nature, meaning that a customer must specify several components in order to create
a full part number. The user must specify the main control board (DMC), the communication board (CMB), and the
interconnect module (ICM) to have a complete unit. The user can also specify an optional internal amplifier (AMP
or SDM). How these models stack up internally is shown in Figure 1.1 for 1-4 axis models.

AMP

(optional)

Figure 1.1: Abstract internal layout of the DMC-40x0 for 1-4 axis models

For 5-8 axis models, the user must also specify an additional ICM and optional internal amplifier type for axis 5-8 as
shown in Figure 1.2.

AMP (1) AMP (2)

(optional) (optional)

CMB ICM (1) ICM (2)

Figure 1.2: Abstract internal layout of the DMC-40x0 for 5-8 axis models

Each module has it's own set of part numbers and configuration options that make the full part number of a DMC-
40x0 unit. The DMC has the part number format “DMC-40X0(Y),” the CMB is “-CXXX(Y),” the ICM is “-IXXX(Y),” and
the AMP/SDM is “-DXXX(Y),” where X designates different module options and Y designates different configuration
options for these modules. The full DMC-40x0 part number would be the full string of individual module part
numbers combined as shown for 1-4 and 5-8 axis models in Figure 1.3.

DMC-40x0 User Manual Chapter 1 Overview = 7

DMC-40X0(Y)-CXXX(Y J-IXXX(Y)-IXXX(Y)-DXXXX(Y)-DXXXX(Y)

——
Internal Amplifier
Axis 5-8
Internal Amplifier -N2AMP ifno infemal amp
Axis 1-4
NoAmp if no intemal amp
Interconnect Type

Interconnect Type Axis 08
Axis 1-4
y Communication Board
of Axis
5,6,70r8

DMC-40X0(Y)-CXXX(Y)-IXXX(Y)-DXXXX(Y)

Axis 1-4
NoAmp if no intemal amp
Interconnect Type
Axis 1-4

l Internal Amplifier

Communication Board

of Axis
1,230r4

Figure 1.3: Layout of a complete DMC-40x0 part number

The placement of ICM and AMP/SDM options is extremely important for 5-8 axis models. Reading left to right, the
first ICM (Axis 1-4) will be placed in the ICM (1) spot in Figure 1.2 and the second ICM (Axis 5-8) will be placed in
the ICM (2) spot. This also follows for AMP/SDM placement.

WARNING

The CMB and ICM module options effect the pin-outs of the DMC-40x0.

Use Table 1.2 and Table 1.3 below to determine your CMB and ICM part numbers then refer to the
appropriate documentation for your pin-outs before connecting any hardware.

DMC, “DMC-40X0(Y)” Options

Option Type Options Brief Description Documentation
X 1,2,3,4,5,6,7,and 8 Number of control axis N/A
Y DIN DIN Rail Mount DMC, “DMC-40X0(Y)” Controller Board
12v Power Controller with 12 VDC Options, starting on pg 183.
-16bit 16-bit analog inputs
4-20mA 4-20mA analog inputs
ISCNTL Isolate Controller Power
TRES Encoder terminating resistors
ETL ETL certification
MO Motor off jumper installed

Table 1.1: Controller board, DMC, “DMC-40X0(Y)” options

Chapter 1 Overview = 8

DMC-40x0 User Manual

CMB, “-CXXX(Y)” Options

Option Type Options Brief Description Documentation
XXX 012 Default communication board A8 — CMB-41012 (-C012), pg 248
022 Dual-Ethernet communication board A9 — CMB-41022 (-C022), pg 252
Y 5V SSI Feedback 5V — Configure Extended 1/0 for 5V logic, pg
185
P422 RS-422 on Main and Aux serial port RS-422 — Serial Port Serial Communication, pg
P1422 RS-422 on Main serial port only 185
P2422 RS-422 on Aux serial port only

Table 1.2: Communication board, CMB “-CXXX(Y)” options

ICM, “-IXXX(Y)” Options

Option Type Options Brief Description Documentation

XXX 000 Default interconnect board A10 - ICM-42000 (-1000), pg 257
100 Sine/Cosine feedback interconnect board A1l -1CM-42100 (-1100), pg 261
200 26-pin encoder connecter interconnect board A12 - ICM-42200 (-1200),pg 267

Y SSI SSI Feedback ICM, “-IXXX(Y)” Interconnect Board Options,

BiSS BiSS Feedback starting on pg 186
DIFF Differential £10 motor command outputs
STEP Differential STEP/DIR outputs

Table 1.3: Interconnect module, ICM “-IXXX(Y)” options

AMP/SDM, “-DXXXX(Y)” Options

Option Type Options Brief Description Documentation
XXXX 3020/3040 500 W trapazmda'l servo drive A1 — AMP-430x0 (-D3040,-D3020), pg 212
2 and 4-axis models
3140 20 W brush-type only drive A2 — AMP-43140 (-D3140), pg 218
3240 750 W trapazoidal servo drive A3 — AMP-43240 (-D3240), pg 221
3520/3540 600 W smusmdall servo drive A4 — AMP-435x0 (-D3540,-D3520), pg 227
2 and 4-axis models
3640 20 W sinusoidal servo drive A5 — AMP-43640 (-D3640), pg 234
4040/4020 1.4 A with 1/16 microstepping drive A6 — SDM-440x0 (-D4040,-D4020), pg 240
4140 3 A with 1/64 microstepping drive A7 —SDM-44140 (-D4140), pg 244
Y 100mA 100mA current AMP/SDM, “-DXXXX(Y)” Internal Amplifier Options,
-D3140 option only starting on pg 188
SSR Solid state relay®
HALLF Filtered hall sensors’
I Not available for all amplifier options, see the
ISAMP Isolates power between amplifiers proper documentation.
Two banks of AMP/SDMs required

Table 1.4: Amplifier options, AMP/SDM “-DXXXX(Y)”

DMC-40x0 User Manual

Chapter 1 Overview = 9

Overview of Motor Types

The DMC-40x0 can provide the following types of motor control:
1. Standard servo motors with + 10 volt command signals
2. Brushless servo motors with sinusoidal commutation
3. Step motors with step and direction signals

4. Other actuators such as hydraulics and ceramic motors - For more information, contact Galil.

The user can configure each axis for any combination of motor types, providing maximum flexibility.

Standard Servo Motor with £10 Volt Command Signal

The DMC-40x0 achieves superior precision through use of a 16-Bit motor command output DAC and a sophisticated
PID filter that features velocity and acceleration feed-forward, an extra pole filter and integration limits.

The controller is configured by the factory for standard servo motor operation. In this configuration, the controller
provides an analog signal (£10 volts) to connect to a servo amplifier. This connection is described in Chapter 2.

Brushless Servo Motor with Sinusoidal Commutation

The DMC-40x0 can provide sinusoidal commutation for brushless motors (BLM). In this configuration, the
controller generates two sinusoidal signals for connection with amplifiers specifically designed for this purpose.

Note: The task of generating sinusoidal commutation may be accomplished in the brushless motor amplifier. If the
amplifier generates the sinusoidal commutation signals, only a single command signal is required and the controller
should be configured for a standard servo motor (described above).

Sinusoidal commutation in the controller can be used with linear and rotary BLMs. However, the motor velocity
should be limited such that a magnetic cycle lasts at least 6 milliseconds with a standard update rate of 1
millisecond. For faster motors, please contact the factory.

To simplify the wiring, the controller provides a one-time, automatic set-up procedure. When the controller has
been properly configured, the brushless motor parameters may be saved in non-volatile memory.

The DMC-40x0 can control BLMs equipped with Hall sensors as well as without Hall sensors. If Hall sensors are
available, once the controller has been setup, the brushless motor parameters may be saved in non-volatile
memory. In this case, the controller will automatically estimate the commutation phase upon reset. This allows
the motor to function immediately upon power up. The Hall effect sensors also provide a method for setting the
precise commutation phase. Chapter 2 describes the proper connection and procedure for using sinusoidal
commutation of brushless motors.

Stepper Motor with Step and Direction Signals

The DMC-40x0 can control stepper motors. In this mode, the controller provides two signals to connect
to the stepper motor: Step and Direction. For stepper motor operation, the controller does not require
an encoder and operates the stepper motor in an open loop fashion. Chapter 2 describes the proper
connection and procedure for using stepper motors.

If encoders are available on the stepper motor, Galil’s Stepper Position Maintenance Mode may be used
for automatic monitoring and correction of the stepper position. See Stepper Position Maintenance
Mode (SPM) in Chapter 6 for more information.

Chapter 1 Overview = 10 DMC-40x0 User Manual

Overview of External Amplifiers

The amplifiers should be suitable for the motor and may be linear or pulse-width-modulated. An amplifier may
have current feedback, voltage feedback or velocity feedback.

Amplifiers in Current Mode

Amplifiers in current mode should accept an analog command signal in the +10 volt range. The amplifier gain
should be set such that a +10V command will generate the maximum required current. For example, if the motor
peak current is 10A, the amplifier gain should be 1 A/V.

Amplifiers in Velocity Mode

For velocity mode amplifiers, a command signal of 10 volts should run the motor at the maximum required speed.
The velocity gain should be set such that an input signal of 10V runs the motor at the maximum required speed.

Stepper Motor Amplifiers

For step motors, the amplifiers should accept step and direction signals.

Galil Internal Amplifiers and Drivers

With the DMC-40x0 Galil offers a variety of Servo Amplifiers and Stepper Drivers that are integrated into the same
enclosure as the controller. Using the Galil Amplifiers and Drivers provides a simple straightforward motion control
solution in one box. Instead of having to route a +/-10V motor command signal, or STEP/DIR to some external box,
all the wiring is taken care of internally. In addition, Galil's internal amplifiers reside inside the same box as the
controller, ICM, and communication board (see Part Numbers, pg 2) saving real estate space and the hassle of
configuring a separate device.

A full list of amplifier specifications and details can be found in the Integrated Components, starting on pg 210.

DMC-40x0 User Manual Chapter 1 Overview = 11

Functional Elements

The DMC-40x0 circuitry can be divided into the following functional groups as shown in Figure 1.4 and discussed

below.
| WATCHDOG TIMER |
II ISOLATED LIMITS AND
e
HOME INPUTS
ETHERNET RISC BASED HIGH-SPEED l4—————— MAIN ENCODERS
MICROCOMPUTER /_I\ MOTOR/ENCODER [AUKXILIARY ENCODERS
\,_‘/ INTERFACE » +-10 VOLT OUTPUT FOR
Rs-232/ |/— FOR SERVO MOTORS
AB.CD
RS-422 — B.C PULSE/DIRECTION OUTPUT
e
FOR STEP MOTORS
1 . HIGH SPEED ENCODER
) >
32 Configurable /O 1/O INTERFACE l l COMPARE OUTPUT
8 UNCOMMITTED 8 PROGRAMMABLE
ANALOG INPUTS 8 PROGRAMMABLE, HIGH POWER OPTOISOLATED
OPTOISOLATED OUTPUTS

INPUTS

HIGH-SPEED LATCH FOR EACH AXIS

Figure 1.4: DMC-40x0 Functional Elements

Microcomputer Section

The main processing unit of the controller is a specialized Microcomputer with RAM and Flash EEPROM. The RAM
provides memory for variables, array elements, and application programs. The flash EEPROM provides non-volatile
storage of variables, programs, and arrays. The Flash also contains the firmware of the controller, which is field
upgradeable.

Motor Interface

Galil's GL-1800 custom, sub-micron gate array performs quadrature decoding of each encoder at up to 22 MHz. For
standard servo operation, the controller generates a +10 volt analog signal (16-bit DAC). For sinusoidal
commutation operation, the controller uses two DACs to generate two +10 volt analog signals. For stepper motor
operation, the controller generates a step and direction signal.

Communication

The communication interface with the DMC-40x0 consists of high speed RS-232 and Ethernet. The Ethernet is
10/100Bt and the two RS-232 channels can generate up to 115K. An additional Ethernet port is available with the
CMB-41022, see A9 — CMB-41022 (-C022), pg 252 for details.

General I/O

The DMC-40x0 provides interface circuitry for 8 bi-directional, optoisolated inputs, 8 high power optoisolated
outputs and 8 analog inputs with 12-Bit ADC (16-Bit optional). The DMC-40x0 also has an additional 32 1/0 (3.3V

Chapter 1 Overview = 12 DMC-40x0 User Manual

logic) and unused auxiliary encoder inputs may also be used as additional inputs (2 inputs / each axis). The general
inputs as well as the index pulse can also be used as high speed latches for each axis. A high speed encoder

compare output is also provided.

System Elements

4080 The DMC-4050 through DMC-4080 controller provides an additional 8 optoisolated inputs and 8 high
power optoisolated outputs.

As shown in Figure 1.5, the DMC-40x0 is part of a motion control system which includes amplifiers, motors and
encoders. These elements are described below.

Computer

Power Supply

Motor

DMC-40x0 Controller

Amplifier (Driver)

Figure 1.5: Elements of Servo systems

Motor

A motor converts current into torque which produces motion. Each axis of motion requires a motor sized properly
to move the load at the required speed and acceleration. (Galil's MotorSizer Web tool can help you with motor
sizing: www.galilmc.com/support/motorsizer)

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear. For step motors, the
controller can be configured to control full-step, half-step, or microstep drives. An encoder is not required when

step motors are used.

Other motors and devices such as Ultrasonic Ceramic motors and voice coils can be controlled with the DMC-40x0.

Amplifier (Driver)

For each axis, the power amplifier converts a £10 volt signal from the controller into current to drive the motor.

For stepper motors, the amplifier converts step and direction signals into current. The amplifier should be sized
properly to meet the power requirements of the motor. For brushless motors, an amplifier that provides electronic
commutation is required or the controller must be configured to provide sinusoidal commutation. The amplifiers
may be either pulse-width-modulated (PWM) or linear. They may also be configured for operation with or without
a tachometer. For current amplifiers, the amplifier gain should be set such that a 10 volt command generates the
maximum required current. For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V. For
velocity mode amplifiers, 10 volts should run the motor at the maximum speed.

Galil offers amplifiers that are integrated into the same enclosure as the DMC-40x0. See the Integrated section in
the Appendices or http://galilmc.com/products/accelera/dmc40x0.html for more information.

DMC-40x0 User Manual

Chapter 1 Overview = 13

http://galilmc.com/products/accelera/dmc40x0.html
http://www.galilmc.com/support/motorsizer

Encoder

An encoder translates motion into electrical pulses which are fed back into the controller. The DMC-40x0 accepts
feedback from either a rotary or linear encoder. Typical encoders provide two channels in quadrature, known as
MA and MB. This type of encoder is known as a quadrature encoder. Quadrature encoders may be either single-
ended (MA+ and MB+) or differential (MA+, MA-, MB+, and MB-). The DMC-40x0 decodes either type into
quadrature states or four times the number of cycles. Encoders may also have a third channel (or index) for
synchronization.

The DMC-40x0 can be ordered with 120 Q termination resistors installed on the encoder inputs. See the Ordering
Options in the Appendix for more information.

The DMC-40x0 can also interface to encoders with pulse and direction signals. Refer to the “CE” command in the
command reference for details.

There is no limit on encoder line density; however, the input frequency to the controller must not exceed 5,500,000
full encoder cycles/second (22,000,000 quadrature counts/sec). For example, if the encoder line density is 10,000
cycles per inch, the maximum speed is 300 inches/second. If higher encoder frequency is required, please consult
the factory.

The standard encoder voltage level is TTL (0-5v), however, voltage levels up to 12 Volts are acceptable. (If using
differential signals, 12 Volts can be input directly to the DMC-40x0. Single-ended 12 Volt signals require a bias
voltage input to the complementary inputs).

The DMC-40x0 can accept analog feedback (£10v) instead of an encoder for any axis. For more information see the
command AF in the command reference.

To interface with other types of position sensors such as absolute encoders, Galil can customize the controller and
command set. Please contact Galil to talk to one of our applications engineers about your particular system
requirements.

Sinusoidal Encoders

The DMC-40x0 can be ordered with an interconnect module that supports the use of 1Vp-p sinusoidal encoders.
This interconnect module is the ICM-42100. See A11 —I1CM-42100 (-1100) in the Appendix for more information.

Watch Dog Timer

The DMC-40x0 provides an internal watch dog timer which checks for proper microprocessor operation. The timer
toggles the Amplifier Enable Output (AMPEN) which can be used to switch the amplifiers off in the event of a
serious DMC-40x0 failure. The AMPEN output is normally high. During power-up and if the microprocessor ceases
to function properly, the AMPEN output will go low. The error light will also turn on at this stage. A reset is
required to restore the DMC-40x0 to normal operation. Consult the factory for a Return Materials Authorization
(RMA) Number if your DMC-40x0 is damaged.

Chapter 1 Overview = 14 DMC-40x0 User Manual

Chapter 2 Getting Started

Layout

The following layouts assume either an ICM-42000(1000) or ICM-42100(1100) interconnect modules are installed.
For layouts of systems with ICM-42200’s(1200) installed please contact Galil. Overall dimensions and footprint are
identical, the only differences are in connector type and location.

DMC-4040

N~ |
| /
\
|
! \@/ \
| |
| |
| |
___ H
O & A B C D POWER O
ENCODER STEPPER SERVO POWER
18 C-4040
e D M 404 14 HALC 18::9\ 4AB+ :+S‘ é gr’C (;l\vlg
GALIL GALIL MOTION CONTROL el ama ou SiEl (o] [©00]
MADE IN USA A TME

@) <@ <@
+

MTRM GND GND
ATRM +5V +5V
APWR +2v +12v
AEC1 AEC2
1

ENCODERB
+
ENCODER C
+
ENCODERD
+

ENCODERA

AECOM2

& @ & & =
g
ANALOG ; , £ |
o o o « o ©
= gaanp |ACND z g < = E
w 10AR2 3 & z ES
=] 3A3 2]] S 2
2 1A 2 % S
w 4AI5 =z = =
g 1246 = 2 ES
= 5A7 = 2
o] 13A8 &
1one GAGND &
712V {B '69']
[EREYAY
EXTENDED 10 EXTERNAL DRIVER (A-D) /0 (A-D) $
atiote 8197 o1 I arstee 19STPA 4 pes 1 a0y 19V
171020 2 17RES w“oup 14 ORET
iz 1719 2icer z 2REs TS asTRC oo 2a008 12 0P
BaND 1212 31024] wanD (05 aREs ahor apos 1000
341027 41028 5 34 DIRB 4REs 200¢ 7 pop
asioan 2192 51009 ssREs 20FES g ppe 4001 ey 11OPWR
O gD 21990 6o asaND 21 0FD gpeg 40CND s usp 1OHOMD O
2NC 22 AECH 39FLSD 9HOMC
371064 71033 37 AENB 7 AENA 24RLSC
231085 23 AENC 3BFLSC 8 HOMB
RESET 3BNC 81036 38 AEC? 8 AEND 23RLSE
aseND 241997 91038 oFT ssan 2NC g I7TALSB pppusa 1 HOMA
wiozs BNC o LINK/ACT aomemn 2212 41y BASA iyg BLSCOM
0% 261040 19NC o 2RES 35 GND 5ELO
atlole 251090 111041 384K 4RES 2FES 11 wowe G0 wnmRr 5o
421045 121044 192K G} ERROR 42 MCMD 12RES 19DI6
@aND 219 131047 UPGD @aND 2°S iane e tom 2D
anc 2% nc et -powen “NC g NG sranp [TNCOM Jgng
K 3V 15 Res 15457 16RST
__ 1

Figure 2.1: Outline of the of the DMC-40x0 1-4 axes model

DMC-40x0 User Manual Chapter 2 Getting Started = 15

DMC-4080

1549t A+l
\ '

8831 ooz INO I ongt N gy

61z oHaze ON 62
QINEL AND €7

auae =
S3yet HNOW 2

suav OWOW L2
NN 11 S iy

013§ S3H 92
AZH- 0k JWOW 0%

Noos19 ey
ong NS Tang 6

3INOH £ N e
HN3Y 8 203V 86

JNOH 8 oNav &2
Nav L Nav 25

DINOH 6 1oav ze
S3d9 AND 9€

HIVOH 0 Rl 12
9405 S ee

HMdO LE S34 02
RECRZ EL (R

100zt 36!
Se anNose

¥100 € HdlS 8}
9dlse S3ayze
3607k | sl SMI sk

AS*GL 3d1S 94

(H-3) HIAIHQ TYNH3LX3

mw (H3) o1

P
R
z 5
5 o
2 7
3 =z i
i
> >
&
g
o O
mW me s =
g =
ek ner
s+ ns+
ane ano

+15 |+
EXE.

HH300ON3
O H3IQOON3
4H3000N3

A@.I‘m
&

[coo]ane oloole -g[co]v
[050] s+ oN[O[o]v +a[O[0]+

HIMOd OAH3S

|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203v 103v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W H3ddals
|
|
|

4IMOd H D] | E|

(H-3) ¥3AIHQ WNHILX3

343000N3

way | IS avg e
Haz clasl caze
nae Go% daes
Aav 148V 02 810 v€
oms VI avase
noos1e NI vsiee
VIOH £ asTd €2 4574 L&
anons SS9 oenase
OMOHS 987 g5 e
anoror IHE o op
HMdO L1 20022 100 v
€odzh 50082 00 e
w0ss 008 soasr
sz 0% anow
AS*GL
$ (@von
k_v =
z
g
=
o
(o]
b Z
Q
+
=)
2
3
o
WL “mﬁw WY L
e le vel
YW E W6 gIVH el
sayr WO o
aNo § NG+ G
H3IQ00NT

<

AS*S1
NI w“u MM NP
JNEL SIH 82 AND €7
BECEAY WO 22 AWOW 2v
GNOW |1 s34 9z EECE
AZk- 01 AL+ G2 YINOW O
ON6 N2 AND 68
aN3v 8 ONaV €2 203v 8e
VN3V £ 103V 22 N3V L6
S3d9 aHia 1z QND %€
qdla s s34 02 EECE
REERS VU 61 adia ve
RECES Qdls st QN9 €€
odise SIH L) RECKAS
S3Y b VaLS oL ad1s 1
(@) H3AIHQ TYNH3LXT
5]
=
e L
> >
&
o
o O
= =
5=
203v 103
AL A
NSt NG+
aNg aN9
av
m m
W 3 ANJ 3
o o
o (=}
bt &
e ==}
o @

+

(a-v) ¥3AIHQ WWNHILXT

<

V 43000N3

LOVINIT .&W.

VIH3S XNV

sl
LS onl 'S onwy
mm.mq BOIEL g/ ONOEY
we oy oz 00
on onoi %A% eeor0y
88016 aND 68
georg LSO ongs mwmwmm
gois 0% ye0iss
wos 0% avose
. B omn SR
E vore 8 guoes
H 12012 £20181 220l 2e
B oL %L gorie
ul L1019t

01 03aN3LX3

As+g
ACH SE
A2L-L
mW anNov 9 Om\ L A_V
IV €1
= e
£ e ava
=z ¢l bV L
@ Ve avor
kT o %
S angy | ONOVS
~ 3
' DOTYNY
VvSN NI 3avin
I0H.LNOO NOLLOW ¥ 717V

080¥-ONd

0/103aN3LX3

Outline of the of the DMC-40x0, 5-8 axes model

Figure 2.2

DMC-40x0 User Manual

Chapter 2 Getting Started = 16

Power Connections

SDM/AMP Power

SDM/AMP Power

2-pin Molex controller power connector. : Axis E-H
Axis A-D
XIS A-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ———x
< < |
@) D) !
Nusts Nusts |
|
|
|
,,, =
|
O + A B C D POWER & E F G H POWER NG
|
) ENCODER STEPPER SERVO POWER |
| DMC-4080 |
1 14 HALG ‘g::f" 4AB+ ﬁ+g+ é gJC éxg % |
13HALS 3hA- - -
: GALIL GALIL MOTION CONTROL oas SMA et |
MADE IN USA e (WE e !
| &M |
| |
| |
| |
! Q} {B |
| |
| < @ o =) m w o kS |
| = o e = = T « T |
a 8 a & a a & =
| I ESR ENE ENEE ERN ESR EaE E .
! 2 e S e e 2 e e |
| g - g "z [- " g - | !
| |
! © © !
| |
AD 3
| |
| MTRM oND ano anD aNo |
| ATRM W5V 5V L5V 5V |
| APWR Hav 2 2y A2 |
AECH AEC2 AECH AEC2
! I
L & & e + £s & &
. |
| ANALOG ; : Ea | : B o
[1AGND = 2 g g g B3 E3 2 |
2 2 = - : 8 , : 5]
= SAOND g a1 & + & J’» = s Ed = S & |
e 1ag A8 z 2 w =3 Z & 5] w 1
| & 4h5 2 =] 12 z & |
B 12R6 g p7 = =< 5 &
] 13AI8 jry 2 |
| + 1N SACND 2+ 2 |
152 112 ﬂ} & 5
! 845V i} & |
: & & !
| EXTENDED 10 EXTERNAL DRIVER (A-D) 0 (A-D) {B EXTERNAL DRIVER (E-H) 10 (E-H) @ }
161017 = 16 STPA 1545V 16 STPE 1545V
| siiote 1810 11018 5 siss [S5h 1Res o R o sisToE S 1Res U oup 08V |
| iz 17102 i0a1 z whes TR ostRc facup 29008 140 whes 17 ostea o oar 290016 12 0% |
33 GND 31024 o 33END 3RES 28005 336ND 3RES 5 280013
| 341027 191025 4102 = 34DIRB. 19 DIRA 4RES 42D04 D02 12D03 34 DIRF 19 DIRE 4RES 42 DO, 70010 120011 |
| 1028 w 20RES 41001 110PWR 20RES 41009 R |
O | 31030 211031 1029 35RES 21 DIRD SDIRG 40 GND NG 10 HOMD 35RES 21 DIRH 5DIRG 40 GND NG 10 HOMH
3 GND 61032 366ND §RES 25RLSD 366ND RES 25 RLSH 11O
! ariose 2NC 71003 a7aENe Z2AEC1 7 pena RS0 pypsc SHOMC araene 2AEC1 g pene WA pypsa SHOMG
L1 Reser sNc 219% g5 asaece S3AENC g penp BASC ypsp SHOMB saEce BAENG g ey BFSG pypge SHOME [S—
. e A I o) e D AT ToE |
| wiz 2 10NG Vo d ancun 22 8 10-12v B aine 0L amove 22/ 1.1 E 2iNe 2 |
| atio 20140 1 joat 8K GRES ZOMCS 11 MONe o ameAr 5o CIRES 20MES 11 MOME e apaEr SHO |
21065 271048 45 044 To2K -$—ERROH £2MoMD 12RES 1906 22 MOMH 12RES 190I14
I s aBioM 1204 : 2BRES 33015 301 28RES 2R 330i18 aoi2 |
1048 UPGD HBOND gy 13NC so 1808 oo 8O eng 1ONC aeoio 1801 2ol
! une 2 14NG VRST POWER NG 14NC 17INCOM HNC 14NC 17INCOM !
| 30+3.3V 15RES 30NIC 1545V 31GNI RST 1ERR 30NIC 15457 31 GND RST 1ERR |

+VDC20-50V)

1

DC GROUHL

]

Figure 2.4: Power Connector used when controller is ordered without Galil Amplifiers

For more information on powering your controller see Step 4. Power the Controller, pg 17. For more information

regarding connector type and part numbers see Power Connector Part Numbers, pg 190. The power specifications
for the controller are provided in Power Requirements, pg 180. and the power specifications for each amplifier are
found under their specific section in the appendix, see Integrated Components, pg 210.

DMC-40x0 User Manual

Chapter 2 Getting Started = 17

Dimensions

DMC-4040

My _ fan)
T el
|
]
Ll
@ A B c
| 7 sy
SN
8B, h.B-
GALIL e MEER !
> |
]
E
1 i
7.25 6.75 o wo
] -
- -
BECH HECE
2 ! e
| |1
+
EXTEANAL DRIVER [A-D|
£ L e
| & 3 I E o
s DA one
@ sao DU iR
| 37 AENE FAENC T
=9 aow B2 e
avon ZHT g
| 4 FE3 TN
42 WD FE3
|
o

Figure 2.5: Dimensions (in inches) of DMC-40x0 (where x= 1, 2, 3, or 4 axis)

.

ogogo
Q00
[OX®)
(OXOXO)]
o0
Q00
(OXO)
OOOOO
OOOOO
(OXOXO)
00
00
(OXO)
000
00
OOOOO
DOOOO
OOOOO
Q00
00
OOOOO i
000

—-| =—0.125

1.4

Chapter 2 Getting Started = 18

DMC-40x0 User Manual

DMC-4080

W ——
GZL0 f—

(ORONO)
L 00
00
00
00
00
CO00
00
C 00
00
00
OO0
(ONOXO)
o0
o000
00
o000
00
o000
00
o000
00
00
o0
(ONOXO)
00
00
OOOOO
o0

L P amm
sz s o e o oRE
e e o

s wn o
gy MRS am o w2 RN
aus o T

mons MM spum Bl pem AN

M F MK
Jons IS peng VR oy SVE

onoHE T e T WL

oz MRS e b mmi TEE

W0 L a0 .e. wr ST e
uoon P28 nona Sap mon EOHE
iott S0aE ey
man M aem e ma SR
ra b aasi
.Qfﬂﬂ_ (3] BRI TRELE

W wolkL Iy
o me 0% e
Es.xz._.@ Lty wE T e

LINYIHIS
&
i
&
g
=8
23

(o) HANHO TVMREINE
o
oL

L ETH

: L

[ilE T E]

[]
i

WS NI 30V

SL9 ST'L

Besler SRR AR s MR A
e S -
e Tan I 0807-ONA g,
HIMOd H 9 d 3 i HImod a4] g v ks
[N)
S N I B I -
Qo°LL
0s'LL

5d ¥
LoZ"0e

5, 6, 7, or 8 axis)

Figure 2.6: Dimensions (in inches) of DMC-40x0 (where x:

Chapter 2 Getting Started = 19

DMC-40x0 User Manual

Elements You Need

For a complete system, Galil recommends the following elements:

1.

2.
3.
4

bl

6.

DMC-40x0, motion controller where the x designates number of axis, 1-8.
Motor Amplifiers (Integrated when using Galil amplifiers and drivers)
Power Supply for Amplifiers and controller

Brush or Brushless Servo motors with Optical Encoders or stepper motors.

Cables for connecting to the DMC-40x0’s integrated ICM’s.
PC (Personal Computer - RS232 or Ethernet for DMC-40x0)
GalilSuite or GalilSuite Lite (Free) software package

GalilSuite is highly recommended for first time users of the DMC-40x0. It provides step-by-step instructions for
system connection, tuning, and analysis.

Chapter 2 Getting Started = 20

DMC-40x0 User Manual

Installing the DMC, Amplifiers, and Motors

Installation of a complete, operational motion control system consists of the following steps:
Step 1. Determine Overall System Configuration, pg 16
Step 2. Install Jumpers on the DMC-40x0, pg 17
Step 3. Install the Communications Software, pg 17
Step 4. Power the Controller, pg 17
Step 5. Establish Communications with Galil Software, pg 18

Step 6. Connecting Encoder Feedback, pg 19 Optional for steppers
Step 7. Setting Safety Features before Wiring Motors, pg 20 Servo motors only
Step 8. Wiring Motors to Galil's Internal Amps, pg 22 Internal amplifiers only

Step 8a. Commutation of 3-phased Brushless Motors, pg 24 Brushless motors only
Step 9. Connecting External Amplifiers and Motors, pg 29 External amplifiers only

Step 10. Tune the Servo System, pg 31 Servo motors only

Electronics are dangerous!

Only a certified electrical technician, electrical engineer, or electrical professional should wire
the DMC product and related components. Galil shall not be liable or responsible for any

incidental or consequential damages.
WARNING

All wiring procedures and suggestions mentioned in the following sections should be done
with the controller in a powered-off state. Failing to do so can cause harm to the user or to
the controller.

The following instructions are given for Galil products only. If wiring an non-Galil device,
NOTE follow the instructions provided with that product. Galil shall not be liable or responsible for
any incidental or consequential damages that occur to a 3™ party device.

Step 1. Determine Overall System Configuration

Before setting up the motion control system, the user must determine the desired motor configuration. The DMC-
40x0 can control any combination of brushless motors, brushed motors, and stepper motors. Galil has several
internal amplifier options that can drive motors directly but can also control external amplifiers using either a £10V
motor command line or PWM/Step and direction lines. There are also several feedback options that the DMC can
accept.

See Part Numbers, pg 2 for understanding your complete DMC unit and part number before continuing.

DMC-40x0 User Manual Chapter 2 Getting Started = 21

Step 2. Install Jumpers on the DMC-40x0

The following jumpers are located in a rectangular cut-out near the power and error lights on the communication
board. See A8 — CMB-41012 (-C012), pg 248 or A9 — CMB-41022 (-C022), pg 252 for clarification, depending on the
communication board ordered.

Motor Off Jumper

It is recommended to use the MO jumper when connecting motors for the first time. With a jumper installed at the
MO location, the controller will boot-up in the “motor off” state, where the amplifier enable signals are toggled to
“inhibit/disable”.

RS232 Baud Rate Jumpers

If using the RS232 port for communication, the baud rate is set via jumpers. To set the baud rate, use the jumper
settings as found in Baud Rate Selection, pg 51.

Master Reset and Upgrade Jumpers
Jumpers labeled MRST and UPGD are the Master Reset and Upgrade jumpers, respectively.

When the MRST pins are jumpered, the controller will perform a master reset upon a power cycle, the reset input
pulled down, or a push-button reset. Whenever the controller has a master reset, all programs, arrays, variables,
and motion control parameters stored in EEPROM will be erased and restored back to factory default settings.

The UPGD jumper enables the user to unconditionally update the controller’s firmware. This jumper should not be
used without first consulting Galil.

Step 3. Install the Communications Software

After applying power to the controller, a PC is used for programming. Galil's development software enables
communication between the controller and the host device. The most recent copy of Galil's development software
can be found here:

http://www.galilmc.com/support/software-downloads.php

Step 4. Power the Controller

Dangerous voltages, current, temperatures and energy levels exist in this product and the
associated amplifiers and servo motor(s). Extreme caution should be exercised in the
application of this equipment. Only qualified individuals should attempt to install, set up
and operate this equipment. Never open the controller box when DC power is applied

WARNING

If the controller was ordered with Galil's internal amplifiers, power to the controller and amplifier is typically
supplied through the amplifier's power connector. If the controller is ordered without internal amplifiers, the
power will come through a 2-pin connector on the side of the controller. See Power Connections, pg 12 for the
location of the power connections of the DMC-40x0. For pin-outs and a list of connectors to make a power cable,
see Power Connector Part Numbers, pg 190.

Different options may effect which connections and what bus voltages are appropriate. If using an internal
amplifier, the ISCNTL — Isolate Controller Power, pg 184 option will require multiple connections, one to power the
controller board and another to power the amplifiers. If using two banks of amplifiers the ISAMP — Isolation of
power between each AMP amplifier, pg 188 option will require that the amplifiers are powered independently.

Table 2.5 below shows which power connectors are and required for powering the system based upon the options
ordered. “X” designates a connection, these connectors are only populated if required.

Chapter 2 Getting Started = 22 DMC-40x0 User Manual

http://www.galilmc.com/support/software-downloads.php

Options Ordered Power Connector Locations
ISCNTL AMF’/SDM AMI?/SDM ISAMP Coptroller POV\{eI’ AMP/SDM quer, Axis A-D AMP/SDM P(?wer, Axis E-H
Axis A-D Axis E-H (2-pin Molex on side) (6- or 4-pin Molex) (6- or 4-pin Molex)
X

X X
X X X X

X X Xt X1
X X X X xt Xt

X X X X
X X X X X X

Table 2.5: Available power connectors based upon option ordered

In this configuration the amplifiers are sharing power. Their bus voltages and grounds must be from the same source to prevent damage
to the controller and amplifiers.
NOTE: If the 12V option is ordered, the DMC-40x0 is automatically upgraded to ISCNTL and should be powered
accordingly.

The DMC-40x0 power should never be plugged in HOT. Always power down the power supply before installing or
removing power connector(s) to/from controller.

NOTE: Any emergency stop or disconnect switches should be installed on the AC input to the DC power supply.
Relays and/or other switches should not be installed on the DC line between the Galil and the Power supply. An
example system is shown in Figure 2.7 with a DMC-4080-C012-1000-1000-D3040-D3040:

20-80VDC BREAKER
OR RELAY
L L
W
Np———=N
V,
+ +

(¢]

LY i e R R e |

L @eeE eeeE
‘T' o ,: o 5T o :Vo ii:o o
SERVO ' . a

DMC-4080

=M}

et %, IF.
ol X ° @

=
coo

DMC—-4000
Figure 2.7: Wiring for DMC-4080 with Amplifiers

The green power light indicator should go on when power is applied.

Step 5. Establish Communications with Galil Software

See Ethernet Configuration, pg 52 for details on using Ethernet with the DMC-40x0. To configure your NIC card
using Windows to connect to a DMC controller, see this two-minute video:

http://www.galilmc.com/learning/two-minute-display.php?video=connecting-to-ethernet-controller

For connecting using serial, see RS-232 Configuration, pg 50 for proper configuration of the Main DMC-40x0 serial
port.

DMC-40x0 User Manual

Chapter 2 Getting Started = 23

http://www.galilmc.com/learning/two-minute-display.php?video=connecting-to-ethernet-controller

See the GalilSuite manual for using the software to communicate:

http://www.galilmc.com/support/manuals/galilsuite/index.html

Step 6. Connecting Encoder Feedback

The type of feedback the unit is capable of depends on the ICM (Interconnect module) chosen and additional
options ordered. Table 2.6 shows the different Encoder feedback types available for the DMC-40x0 including which
ICM and additional part numbers are required. Note that each feedback type has a different configuration
command. See the Command Reference for full details on how to properly configure each axis.

Different feedback types can be used on the same controller. For instance, one axis could be using Standard
guadrature and the next could be using SSI on the same ICM board. By default, all axis are configured for Standard

quadrature.
fi .
Feedback Type Configuration ICM/Part Number Required Connection Location
Command
Standard quadrature CE Standard on all units Encoder
Step/Dir CE Standard on all units Encoder
Standard on all units
Analog! AF Anal
nalog (12-bit Standard. 16-bit optional) nalog
ICM-42000 (-1000) or ICM-42200 (-1200)
ST E
Ss with the (SSI) option ncoder
. ICM-42000 (-1000) or ICM-42200 (-1200)
SS
BiSS with the (BiSS) option Encoder
Sin/Cos, 1 Vi AF ICM-42100 (-1200) Encoder
None? - - -
Other Contact Galil at 1.800.377.6329

1Al wiring/electrical information regarding using analog inputs can be found in the Analog Inputs, pg 41.

Table 2.6: Configuration commands, ICM/Part numbers required for a given feedback type

2 Although stepper systems do not require feedback, Galil supports a feedback sensor on each stepper axis. Servo motors require a

position sensor.

A note about using encoders and steppers:

When a stepper is used, the auxiliary encoder for the corresponding axis is unavailable for an external
connection. If an encoder is used for position feedback, connect the encoder to the main encoder input
corresponding to that axis. The commanded position of the stepper can be interrogated with TD and the
encoder position can be interrogated with TP.

The following steps provide a general guide for connecting encoders to the DMC unit:

Step A. Wire the encoder

The pin-outs and electrical information for SSI and BiSS options can be found here:

SSl and BiSS — SSI and BiSS Absolute encoder Option, pg 186

The rest of the encoder pin-outs is found under the ICM being used:

ICM-42000

Error: Reference source not found, pg Error: Reference source not found

ICM-42100

ICM-42100 Encoder 15 pin HD D-Sub Connector (Female), pg 264

Chapter 2 Getting Started = 24

DMC-40x0 User Manual

http://www.galilmc.com/support/manuals/galilsuite/index.html

ICM-42200
ICM-42200 Encoder 26 pin HD D-Sub Connector (Female), pg 269
Step B. Issue the appropriate configuration commands
Find the appropriate configuration commands for your feedback type as shown in Table 2.6, pg 19.

Step C. Verify proper encoder operation

1. Ensure the motor is off my issuing an MO.

2. Check the current position by issuing TP, the value reported back is in the units of counts.

3. Move the motor by hand and re-issue TP. The returned value should have been incremented or
decremented from the first TP. If there is no change, check the encoder wiring and settings and
retest starting at Step 1.

4. Using the encoder specification sheet, translate a physical distance of the motor into counts read
by the controller. For example, a 2000 line encoder means that the controller reads 2000*4=
8000 counts/revolution and a half turn of the motor would be 4000 counts.

5. Issue TP to determine the current motor position, record this value.

6. Move the motor by hand some measured physical distance.

7. Query TP again. Take the absolute difference from the current TP and the TP recorded from
Step 5.

8. Determine if the physical distance moved is equal to the expected amount of counts calculated in
Step 4, move on to Step 9. Otherwise, check the encoder wiring and settings and retest starting
at Step 1.

9. Perform Step 5-8 again, instead moving a physical distance in the opposite direction. If the
physical distance correctly translates to the expected amount of counts, the encoder is wired
correctly.

Step D. Reverse encoder direction, if necessary

Table 2.7 below provides instructions for how to reverse the direction of feedback by rewiring the encoder to the
DMC controller. The direction of standard, quadrature encoders can be be reversed using the CE command.

Reversing direction of the feedback may cause a servo motor to runaway, see Step 7. Setting

NOTE

Safety Features before Wiring Motors, pg 20 regarding Runaway Motors.
Feedback Type Directions
Differential Swap channels A+ and A-
Standard Quadrature
Single-ended Swap channels A+ and B+
Sin/Cos, 1 Vykpk Swap signals Vo+ and V-
SSI or BiSS Follow encoder manufacturers instructions
Analog feedback Cannot change the direction of feedback without external hardware to invert
analog signal.

Table 2.7: Directions for reversing feedback direction based upon feedback type

' The polarity of the control loop may still be inverted by either re-wiring the motor or using the MT command, see Step 7.
Setting Safety Features before Wiring Motors, pg 20 regarding positive feedback loops.

Step 7. Setting Safety Features before Wiring Motors
This section applies to servo motors only.

Step A. Set Torque Limit

DMC-40x0 User Manual Chapter 2 Getting Started = 25

TL will limit the output voltage of the 10V motor command line. This output voltage is either translated into
torque or velocity by the amplifier (Galil's internal amplifiers are in torque mode). This command should be used to
avoid excessive torque or speed when initially setting up a servo system. The user is responsible for determining
the relationship between the motor command line and the amplifier torque/velocity using the documentation of
the motor and/or amplifier.

See the TL setting in the Command Reference for more details.

See the AG command in the command reference for current gains of Galil's internal amplifiers. The amplifier gain
can also be used to change the ratio of outputting amps of the amplifier per commanded volts of the controller.
This is another way to limit the amount of current but can also maintain the resolution of the £10V motor
command line.

Step B. Set the Error Limit

When ER (error limit) and OE (off-on-error) is set, the controller will automatically shut down the motors when
excess error (| TE| > ER) has occurred. This is an important safety feature during set up as wrong polarity can cause
the motor to run away, see Step C below for more information regarding runaway motors.

NOTE: Off-on-error (OE) requires the amplifier enable signal to be connected from the controller to the amplifier.
This is automatic when using Galil's internal amplifiers, see Step 9. Connecting External Amplifiers and Motors, pg
29 for external amplifiers

Step C. Understanding and Correcting for Runaway Motors

A runaway motor is a condition for which the motor is rotating uncontrollably near it's maximum speed in a single
direction. This is often caused by one of two conditions:

1. The amplifier enable signal is the incorrect logic required by the amplifier
This is only applicable to external amplifiers only.

If the motor is in a MO state when the motor runs away, the MO command is toggling your amplifier
“on/enabled” and needs to be reconfigured. The motor is running away because the controller is registering
the axis is in an “inactive” and is not attempting to control it's movement. See Step 9. Connecting External
Amplifiers and Motors, pg 29 for configuring the amplifier enable signal.

2. The motor and encoder are in opposite polarity causing a positive feedback loop

Reversed polarity is when a positive voltage on the motor command line results in negative movement of the
motor. This will result in a positive feedback loop and a runaway motor.

The following steps can be taken to detect reverse polarity, the A-axis is used as an example:
1. After connecting your servo motor using either Step 8. Wiring Motors to Galil's Internal Amps, pg 22

or Step 9. Connecting External Amplifiers and Motors, pg 29 issue the following commands:

MO A
KIA= O
KPA= O
KDA= O
SH A

2. Check your current position by issuing TP A.

3. Set a small, positive voltage on your motor command line using the OF command; use a high enough
voltage to get the motor to move. This will cause a runaway-like condition so have an appropriate OE
set, see Step B. Example:

OFA= 0.5
4. If the motor has not been disabled by OE, disable it by issuing MO A.

5. Check the position again by using TP A.

Chapter 2 Getting Started = 26 DMC-40x0 User Manual

6. If TP hasincreased, than the motor command line and encoder are in correct polarity. If TP has
decreased than the motor command line is in opposite polarity with the encoder.

If the system has reverse polarity, take the following steps to correct for it:
Brushed Motor
Choose one of the following:
1. Reverse the direction of the motor leads by swapping phase A and phase B
2. Reverse the direction of the encoder, see Step 6. Connecting Encoder Feedback, pg 19
Brushless Motor
Choose one of the following:
1. Reverse direction of the encoder, see Step 6. Connecting Encoder Feedback, pg 19

2. Reverse direction of the motor by swapping any two motor phases (or two hall sensors if using a
trapezoidal amplifier). The motor will now have to be re-commutated by using either the Trapezoidal
or Sinusoidal method, see Step 8a. Commutation of 3-phased Brushless Motors, pg 24

Non-wiring Options

You can reverse the direction of the motor command line by using the MT command or reverse direction of the
feedback by using the CE command (standard quadrature and step/direction feedback only). It is not
recommended to correct for polarity using configuration commands as an unexpected condition may arise
where these settings are accidentally over-ridden causing a runaway.

See the Command Reference for more details.
Step D. Other Safety Features

This section only provides a brief list of safety features that the DMC can provide. Other features include
Encoder Failure Detection (OA, OT, OV) , Automatic Subroutines to create an automated response to events
such as limit switches toggling (# LIMSWI), command errors (# POSERR), and amplifier errors (T2,
#AMPERR), and more. For a full list of features and how to program each see Chapter 8 Hardware & Software
Protection, pg 159.

Step 8. Wiring Motors to Galil's Internal Amps

Table 2.8 below provides a general overview of the connections required for most systems connecting to a DMC
internal amplifier and controller system. Following the table is a step-by-step guide on how to do so.

Motor Type Required Connections

Brushless servo motor | ¢ Power to controller and internal amplifier

* Motor power leads to internal amplifiers

¢ Encoder feedback

» Hall sensors (Not required for sinusoidal amplifiers)

Brushed servo motor * Power to controller and internal amplifier
* Motor power leads to internal amplifiers
¢ Encoder feedback

Stepper motor * Power to controller and internal amplifier
¢ Motor power leads to internal amplifier
* Encoder feedback (optional)

Table 2.8: Synopsis of connections required to connect a motor to Galil's internal amplifiers

DMC-40x0 User Manual Chapter 2 Getting Started = 27

Step A. Connect the encoder feedback (optional for steppers)
See Step 6. Connecting Encoder Feedback, pg 19.
Step B. Connect the motor power leads and halls (if required) to the internal amplifiers

Table 2.9 lists each of Galil's internal amplifiers and where to find documentation for pin-outs of the
amplifier connections and electrical specifications. In addition it describes the commutation method
and whether halls are required.

Amplifier Commutation Halls Required
Al - AMP-430x0 (-D3040,-D3020), pg 212 Trapezoidal Halls required for brushless motors
A2 — AMP-43140 (-D3140), pg 218 Brushed No
A3 — AMP-43240 (-D3240), pg 221 Trapezoidal Halls required for brushless motors
A4 — AMP-435x0 (-D3540,-D3520), pg 227 Sinusoidal Halls optional for brushless motors
A5 — AMP-43640 (-D3640), pg 234 Sinusoidal Halls optional for brushless motors
A6 — SDM-440x0 (-D4040,-D4020), pg 240 N/A, stepper No
A7 — SDM-44140 (-D4140), pg 244 N/A, stepper No

Table 2.9: Amplifier documentation location, commutation, and hall requirements for each internal amplifier.

Pin-outs for the hall signals is found under the ICM being used:
ICM-42000

ICM-42000 Encoder 15 pin HD D-Sub Connector (Female), pg 260
ICM-42100

ICM-42100 Encoder 15 pin HD D-Sub Connector (Female), pg 264
ICM-42200

ICM-42200 Encoder 26 pin HD D-Sub Connector (Female), pg 269

If wiring 3-phased, brushless motors:
NOTE Skip to the additional instructions provided in Step 8a. Commutation of 3-

phased Brushless Motors, pg 24 to find proper commutation.

Step C. Issue the appropriate configuration commands

Table 2.10 provides a brief list of configuration commands that may need to be set depending on your motor
type and motor specifications.

Chapter 2 Getting Started = 28 DMC-40x0 User Manual

Command Description

MT Configures an axis for use with either a stepper or servo motor
AG Amplifier gain (A/V for servos or A/Phase for steppers)
Will configure an internal servo amplifier for brushed mode
BR (Also used to ignore halls when the use of external amplifiers is required in lieu of an
internal)
AU Configures the current loop update rate
(Can also be used to switch capable amplifiers between chopper and inverter mode)

TL, TK Limits motor command line output in Volts, thus limiting the current in the amplifier

YA Stepper drive resolution (microstepping configuration)

LC Configures stepper motor current at holding or “rest” positions

Table 2.10: Sample of motor and amplifier configuration commands

Step D. If using a servo motor, continue to Step 10. Tune the Servo System, pg 31. If using a stepper, continue
on to Step E.

Step E. Enable and use your motor

A SH will enable the internal amplifier and a MO will disable the internal amplifier. Once enabled, you can send
DMC motion commands to move the motor, see Chapter 6 Programming Motion, pg 68 for details.

Step 8a. Commutation of 3-phased Brushless Motors

If a motor is not correctly commutated it will not function as expected. Commutation is the act of properly getting
each of the 3 internal phases of a servo motor to switch at the correct time to allow smooth, 360 degree rotation in
both directions. The two most common methods for doing so are trapezoidal commutation (use of Hall sensors)
and through position sensor algorithms (sinusoidal commutation, no Halls required).

The following sections provide a brief description and guide on how to perform either commutation method
including wiring and configuration commands. These sections are divided into Trapezoidal and Sinusoidal:

Trapezoidal Commutation

The following amplifiers support trapezoidal commutation:
Al — AMP-430x0 (-D3040,-D3020), pg 212
A3 — AMP-43240 (-D3240), pg 221

Trapezoidal commutation is a time-tested way for determining the motor location within a magnetic cycle;
However, interpretation of hall sensor feedback varies between motor manufactures requiring the user to find the
correct wiring combination.

Before wiring the motor the user should determine which is easier: Wiring the hall sensors or wiring the motor
phases. This method will start with wiring both the halls and motor phases at random then trying each of the 6
wiring combinations of either the halls or the motor phases (not both). For each combination, the user will be
asked to check the open-loop velocity in both directions . Some of the wiring combinations will lead to no motion,
this is expected. The following directions are given using the A-axis as an example.

1. Wire the 3 motor phase wires and 3 hall sensors randomly. Do not connect the motor to any external
mechanics or load, a free spinning motor is required for testing. Take all safety precautions necessary as the
motor tests below will result in a runaway condition.

2. Set the PID’s and BR to zero and disable off-on-error (OE) to allow for full rotation of the motor in open-
loop. Issue the following commands from a Galil terminal program:

KPA= O

DMC-40x0 User Manual Chapter 2 Getting Started = 29

KDA= O
KIA= O
BRA= 0
OE 0
SH A

3. Place a small offset voltage on the motor command line using the OF command (ex OFA= 0.5). The
smallest OF possible to see motion is recommended. If no motion presents itself, increase in small increments
until you see motion. If your OF is beyond what is expected to see motion, record “no motion” using one of
the tables below (Table 2.12 for swapping motor phases or Table 2.13 for swapping halls) and try the next
wiring combination.

Note: To stop the motor from spinning use either the MO A command or issue OFA= 0.

4. Once spinning, check the velocity of the motor with the TV A command. Record this value under “+
Velocity” in either Table 2.12 or Table 2.13.

5. Issue an equal but opposite OF. For example, if you previously issued OFA= 0.5 now issue OFA= -0.5.
Record this velocity under “- Velocity.”

6. Issue OFA= 0 or MO A to stop the motors. Power down the controller and amplifiers system and swap 2
wires of the hall sensors or motor power leads—whichever method is being used (Remember, chose one or
the other, not both!). Keep track of what cable combinations have been tested (labeling the phases maybe
useful) in the example table in Table 2.11, motor phases were recorded based upon their insulation color.

7. Repeat steps 2-6 for every possible wiring combination, there will be six and Table 2.12 or Table 2.13 below
should be completely filled out.

8. The correct wiring combination will be the one with the least difference in magnitude between the velocities
in the positive and negative direction. In the case where there are two combinations that meet this criteria,
choose the combination that has the higher velocities. In the example table shown in Table 2.11, Trial 1 would
be the correct choice.

Trial # Phase A Phase B Phase C + Velocity - Velocity
1 Red White Black 155700 -160000
2 Red Black White e motion e motion
3 White Black Red Wo motion o motion
4 White Red Black -141000 139000
5 Black Red White Wo motion o motion
6 Black Wiite Red -70000 92000

Table 2.11: Example table showing realistic test results using this commutation method

Chapter 2 Getting Started = 30 DMC-40x0 User Manual

Trial # Phase A Phase B Phase C + Velocity - Velocity

1

2

6

Table 2.12: Table provided for use with swapping motor phases to achieve trapezoidal communication

Trial # Hall A Hall B Hall C + Velocity - Velocity

1

2

Table 2.13: Table provided for use with swapping hall leads to achieve trapezoidal communication

9. Check that the motor phases and encoder feedback are in proper polarity to avoid a runaway condition. Do
so by watching the different hall transitions by using the QH command and rotating the motor by hand in an MO
state. If the motor and encoder polarity are correct than TP A should report a smaller number when QH A
reports 1 than when QH A reports 3. If TP A is larger when QH A reports 1 than 3, then the motorisin a
positive feedback state and will runaway when sent movement commands; Reverse the encoder feedback as
described in Step 6. Connecting Encoder Feedback, pg 19.

10. Issue MO A and set OFA= 0. Set small, and appropriate values of KP A and KD A and verify the motor
holds position once a SH A is issued. The motor is now under closed loop control.

11. Double check commutation by issuing a small jog command (JGA=1000; BG A) and verify the motor
spins smoothly for more than 360 degrees. If the user monitors QH during the jog movement it should report a
number 1-6 transitioning through the following sequence: 1, 3, 2, 6, 4, 5 and repeating.

12. If no runaway occurs, the motor is ready to be tuned. Skip to Step 10. Tune the Servo System, pg 31.

Sinusoidal Commutation

The following amplifiers support sinusoidal commutation:
A4 — AMP-435x0 (-D3540,-D3520), pg 227
A5 — AMP-43640 (-D3640), pg 234

Galil provides several sinusoidal commutation methods. The following list provides a brief description of how each
method works and Table 2.14 discusses the pros and cons of each. Detailed instructions for each method follow on
pg 27.

BZ Method - The BZ method forces the motor into a zero degree magnetic phase by exciting only two of the
three phases. The location on the motor within it's magnetic phases is known and sinusoidal commutation is
initialized.

DMC-40x0 User Manual Chapter 2 Getting Started = 31

Commands required: BA, BM, Bz

BX Method - The BX method uses a limited motion algorithm to determine the proper location of the motor
within the magnetic cycle. It is expected to move no greater than 10 degrees of the magnetic cycle. The last
stage of the BX command will lock the motor into the nearest 15 degree increment.

Commands required: BA, BM, BX

|H

BI/BC Method — The motor initially boots up in a “pseudo-trapezoidal” mode. The BC function monitors the
status of the hall sensors and replaces the estimated commutation phase value with a more precise value upon
the first hall transition. The motor is then running in a sinusoidally commutated mode and the use of the halls
are no longer required.

Commands required: BA, BM, BT, BC
BZ and QH are used to aid in the wiring process and initial set-up for this method.

Note: These list the minimum required commands to provide commutation. There are many more
commutation configuration commands available not discussed here. See the Command Reference for details.

Method PRO CON
e Can be used with vertical or unbalanced loads |¢ Can cause significant motor movement
BZ * Less sensitive to noise than BX ¢ May fail at hard stops

¢ Does not require halls
® Quick first-time set-up
¢ Provides the least amount of movement (If no|® Not recommended with vertical or

hall sensors are available) unbalanced loads
BX ¢ Does not require halls * Sensitive to noise on feedback lines
o Quick first-time set-up * Requires some movement
e may fail at hard stops
¢ No unnecessary movement required * Requires halls
BI/BC' |e Best option with a vertical or unbalanced loadle Longer first-time set-up due to additional
wiring

Table 2.14: Pros and cons of each commutation method
Lif your motor has halls, it is recommended to use the BI/BC method.

The following sections discuss how to wire and configure a motor for sinusoidal commutation using the different
commutation methods:

BZ/BX Method

The BZ command must move the motor to find the zero commutation phase. This
WARNING movement is sudden and will cause the system to jerk. Larger applied voltages will cause
more severe motor jerk.

The BZ and BX method are wired in the same way. Both BZ and BX require encoder feedback to the controller
and the motor phases to the drive.

1. Check encoder position with the TP command. Ensure the motor is in an MO state and move the motor
manually in the desired positive direction while monitoring TP. If TP reports a smaller, or more negative
number, reverse encoder direction, see Step 6. Connecting Encoder Feedback, pg 19.

2. Select which axis will be using sinusoidal commutation by issuing the BA command.

3.Set brushless modulus, using the BM configuration command. BM is the distance, in counts, of a single
magnetic cycle of the motor. This can be calculated by dividing counts/revolution of the encoder by the

Chapter 2 Getting Started = 32 DMC-40x0 User Manual

number of pole pairs of the motor. For a linear motor, the number of encoder counts per magnetic phase may
need to be calculated from motor and encoder manufacturers information.

4. Try commutating the motor using either BZ or BX command. Note that the BZ and BX commands require a
single argument which is the user allotted maximum voltage to be applied on the motor command line during
the commutation routine. Ensure that the command voltage for BZ or BX is sufficient to move the motor.

a. If the commutation fails and TC 1 returns error codes 114 BZ command runawayor 160 BX
failure, turn off the controller and amplifier and swap motor leads A and B and re-perform steps 1-
4,

b. If the commutation fails and TC 1 returns error code 112 BZ timeout, try increasing the
timeout time with the BZ< t command. t defaults to 1000 msec.

5. Once commutation succeeds, servo the motor (SH) and test commutation by jogging the motor slowly (JG
1000;BG).

a. If the motor stalls, cogs, or runs away, turn off the controller and amplifier and swap motor leads A
and B and re-perform steps 1-4.

b. If the motor rotates smoothly 360 deg in both directions, the motor is properly wired and
commutated. Note: Commutation initialization is required each time the controller is booted up.

BI/BC Method

The motor must have hall sensors to work with BI/BC.
In addition, the AMP-43640 is a special case that supports hall initialization through it's general
inputs, rather than standard hall pins. To query hall state in this case, use BCx rather than QH. See
the BT command for more information.

NOTE

BI/BC method uses the motors hall sensors to initialize the brushless degrees of the motor.

The halls, motor phases, and encoder feedback must all be wired to the DMC. The hall inputs must be aligned so
that hall A aligns with the excitement of motor phase A and B, hall B aligns with the excitement of motor phases B
and C, and hall C aligns with the excitement of motor phases C and A. Setting up the motor for BI/BC initialization
may require wiring changes to both the motor leads and the hall inputs. The following steps will ensure that the
correct configuration is reached:

1. Put the motor in an MO state. Move the motor shaft manually in the direction desired for positive
movement.

a. If TP is decreasing, reverse encoder direction. See Step 6. Connecting Encoder Feedback, pg 19.

2. Continue to move the motor in the positive direction by hand, but now monitor the state of QH. QH should
change as the motor continues to rotate in the positive direction. QH should return the sequence: 132 645.

a. If the order is reversed, swap Hall A and Hall C.
b. If all 6 states are not seen, one of the hall inputs is miswired or not connected.
3. Select which axis will be using sinusoidal commutation by issuing the BA command.

4. Set brushless modulus, using the BM configuration command. BM is the distance, in counts, of a single
magnetic cycle of the motor. This can be calculated by dividing counts/revolution of the encoder by the
number of pole pairs of the motor. For a linear motor, the number of encoder counts per magnetic phase may
need to be calculated from motor and encoder manufacturers information.

5. Initialize the motor for hall commutation BI -1.

DMC-40x0 User Manual Chapter 2 Getting Started = 33

6. Test the motor for proper commutation by enabling the motor (SH) and jogging the motor slowly (JG
1000;BG A). If the motor rotates 360 degrees without cogging, running away, or stalling, skip to step 7.

a. If the motor stalls, cogs, or runs away, issue an MO and try initialization using BZ. If the motor stalls,
cogs, or runs away, after BZ, turn off the controller and amplifier and swap motor phases A and B and
retry steps 3-6.

b. If commutation is still not successful after 6. a., issue the appropriate BA, BM, and BZ commands—
but do not servo. Check the hall state with QH. If QH shows either of the two values shown below,
then turn off the controller and amplifier and rewire the motor based on the following, and then retry
step 3-6.

*If QH m returns 5: Turn off the controller and amplifier and swap motor phases A and B, then Band C
*If QH m returns 6: Turn off the controller and amplifier and swap motor phases A and C, then B and C

7.The motor should now be wired for sine commutation using the BI/BC method. Once BI -1 isissued, the
motor is in a pseudo-trapezoidal state, you can enable sine commutation by issuing the BC command and
commanding a slow jog move. Once a hall transition is found, the commutation will be in sinusoidal mode.

Step 9. Connecting External Amplifiers and Motors

System connection procedures will depend on system components and motor types. Any combination of motor
types can be used with the DMC-40x0. There can also be a combination of axes running from Galil integrated
amplifiers and drivers and external amplifiers or drivers.

Table 2.15 below shows a brief synopsis of the connections required, the full step-by-step guide is provided below.

Motor Type Connection Requirements

Servo motors * Power to controller and amplifier
(Brushed and Brushless) | ¢ Amplifier enable
® Encoder feedback
e Motor command line
* See amplifier documentation for motor connections

Stepper motor * Power to controller and amplifier

e Amplifier enable

* PWM/Step and direction line

* Encoder feedback (optional)

¢ See amplifier documentation for motor connections

Table 2.15: Synopsis of connections required to connect an external amplifier

Step A. Connect the motor to the amplifier
Initially do so with no connection to the controller. Consult the amplifier documentation for instructions
regarding proper connections. Connect and turn-on the amplifier power supply. If the amplifiers are
operating properly, the motor should stand still even when the amplifiers are powered up.

A Note Regarding Commutation

This section applies to 3-phase external amplifiers only.

External amplifiers often will perform either trapezoidal or sinusoidal commutation without the need
of a controller. In this case, be sure to use your amplifiers guide to achieve proper commutation.

Although very rare, if an external amplifier requires the controller to perform sinusoidal commutation,
an additional +10 V motor command line may be required from the DMC. In other words, two motor

Chapter 2 Getting Started = 34 DMC-40x0 User Manual

axes are needed to commutate a single external sinusoidal amplifier. See the BA command for what
two motor command lines to use in this case. After the two +10 V motor command lines are wired,
the user can use the sinusoidal commutation methods listed above under Sinusoidal Commutation, pg
26.

Step B. Connect the amplifier enable signal
Before making any connections from the amplifier to the controller, verify that the ground level of the
amplifier is either floating or at the same potential as earth.

When the amplifier ground is not isolated from the power line or when it has a different
WARNING potential than that of the computer ground, serious damage may result to the computer,
controller, and amplifier.

If you are not sure about the potential of the ground levels, connect the two ground signals (amplifier
ground and earth) by a 10 ké& resistor and measure the voltage across the resistor. Only if the voltage is
zero, connect the two ground signals directly.

The amplifier enable signal is defaulted to 5V, high amp enable. (the amplifier enable signal will be high
when the controller expects the amplifier to be enabled). If the amplifier requires a different configuration
it is recommended it is ordered with the desired configuration, see ordering options here:
Amplifier Enable Configurations, pg 187
Pin-outs for the amplifier enable signal is found under the ICM being used:
ICM-42000
ICM-42000 External Driver (A-D) 44 pin HD D-Sub Connector (Male), pg 259
ICM-42000 External Driver (E-H) 44 pin HD D-Sub Connector (Male), pg 259
ICM-42100
ICM-42100 External Driver (A-D) 44 pin HD D-Sub Connector (Male), pg 263
ICM-42100 External Driver (E-H) 44 pin HD D-Sub Connector (Male), pg 263
ICM-42200
ICM-42200 Encoder 26 pin HD D-Sub Connector (Female), pg 269

For full electrical specifications and wiring diagrams refer to:
External Amplifier Interface, pg 42
ICM-42000 and ICM-42100 Amplifier Enable Circuit, pg 43
ICM-42200 Amplifier Enable Circuit, pg 45

For re-configuring the ICM-42000/ICM-42100 for a different amplifier enable option, see:
Configuring the Amplifier Enable Circuit, pg 195

Once the amplifier enable signal is correctly wired , issuing a MO will disable the amplifier and an SH will
enable it.

Step C. Connect the Encoders (optional for stepper systems)
See Step 6. Connecting Encoder Feedback, pg 19.

Step D. Connect the Command Signals

DMC-40x0 User Manual Chapter 2 Getting Started = 35

The DMC-40x0 has two ways of controlling amplifiers:
1. Using a motor command line (£10V analog output)

The motor and the amplifier may be configured in torque or velocity mode. In the torque mode, the
amplifier gain should be such that a 10V signal generates the maximum required current. In the
velocity mode, a command signal of 10V should run the motor at the maximum required speed.

2. Using step (0-5V, PWM) and direction (0-5V toggling line), this is referred to as step/dir for short.

Some external amplifiers may require the use of differential step/direction or motor command lines. These are
available upon ordering the (STEP) and (DIFF) options, respectively. See DIFF — Differential analog motor
command outputs, pg 186 and STEP — Differential step and direction outputs, pg 186 for more details.

Pin-outs for the command signals are found under the ICM being used:
The full list of ICM pin-outs are provided in Step B, above.
For full electrical specifications refer to:

External Amplifier Interface, pg 42

To configure the command signal type and other configuration commands see Table 2.16 below for a brief
synopsis. For a full list of configuration commands see the Command Reference.

Step E. Issue the appropriate configuration Commands

Command Description
MT The motor type command configures what type of control method to use
(switches axis between motor command or step/dir options)
TL Servo only. Limits the motor command line's continuous output in Volts
TK Servo only. Limits the motor command line's peak output in Volts

Table 2.16: Brief listing of most commonly used configuration commands for the motor command and step/dir lines
Step F. If using a servo motor, continue to Step 10. Tune the Servo System, pg 31. If using a stepper motor, skip
to Step G.

Step G. Enable and use your motor

A SH will enable the external amplifier, once enabled, you can send DMC motion commands to move the
motor, see Chapter 6 Programming Motion, pg 68 for details.

Step 10. Tune the Servo System

Adjusting the tuning parameters is required when using servo motors. A given set of default PID's is provided, but
are not optimized and should not be used in practice.

For the theory of operation and a full explanation of all the PID and other filter parameters, see Chapter 10 Theory
of Operation, pg 167.

For additional tuning resources and step-by-step tuning guides, see the following:
Application Notes

Manual Tuning Methods: http://www.galilmc.com/support/appnotes/optima/note3413.pdf

Manual Tuning using the Velocity Zone method: http://www.galilmc.com/support/appnotes/miscellaneous/note5491.pdf

Autotuning Tools

GalilSuite: http://www.galilmc.com/support/manuals/galilsuite/tuner.html

Chapter 2 Getting Started = 36 DMC-40x0 User Manual

http://www.galilmc.com/support/manuals/galilsuite/tuner.html
http://www.galilmc.com/support/appnotes/miscellaneous/note5491.pdf
http://www.galilmc.com/support/appnotes/optima/note3413.pdf

Chapter 3 Connecting Hardware

Overview

The DMC-40x0 provides optoisolated digital inputs for forward limit, reverse limit, home, and abort signals. The
controller also has 8 optoisolated, uncommitted inputs (for general use) as well as 8 high power optoisolated
outputs and 8 analog inputs configured for voltages between +10 volts.

4080 Controllers with 5 or more axes have an additional 8 optoisolated inputs and an additional 8 high
power optoisolated outputs.

This chapter describes the inputs and outputs and their proper connection.

Overview of Optoisolated Inputs

Limit Switch Input

The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation of the switch.
The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately upon activation of the switch.
If a limit switch is activated during motion, the controller will make a decelerated stop using the deceleration rate
previously set with the SD command. The motor will remain on (in a servo state) after the limit switch has been
activated and will hold motor position. The controller can be configured to disable the axis upon the activation of a
limit switch, see the OE command in the command reference for further detail.

When a forward or reverse limit switch is activated, the current application program that is running in thread zero
will be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists. This is a
subroutine which the user can include in any motion control program and is useful for executing specific
instructions upon activation of a limit switch. Automatic Subroutines for Monitoring Conditions are discussed in
Chapter 7 Application Programming.

After a limit switch has been activated, further motion in the direction of the limit switch will not be possible until
the logic state of the switch returns back to an inactive state. Any attempt at further motion before the logic state
has been reset will result in the following error: “22 - Begin not possible due to limit switch”
error.

The operands, LFx and LRx, contain the state of the forward and reverse limit switches, respectively (x
represents the axis, X, Y, Z, W etc.). The value of the operand is either a ‘0’ or ‘1’ corresponding to the logic state of
the limit switch. Using a terminal program, the state of a limit switch can be printed to the screen with the
command, MG LFx or MG_LRx. This prints the value of the limit switch operands for the ‘x” axis. The logic state
of the limit switches can also be interrogated with the TS command. For more details on TS see the Command
Reference.

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 37

Home Switch Input

Homing inputs are designed to provide mechanical reference points for a motion control application. A transition
in the state of a Home input alerts the controller that a particular reference point has been reached by a moving
part in the motion control system. A reference point can be a point in space or an encoder index pulse.

The Home input detects any transition in the state of the switch and toggles between logic states 0 and 1 at every
transition. A transition in the logic state of the Home input will cause the controller to execute a homing routine
specified by the user.

There are three homing routines supported by the DMC-40x0: Find Edge (FE), Find Index (FI), and Standard Home
(HM).

The Find Edge routine is initiated by the command sequence: FE A, BG A. The Find Edge routine will cause the
motor to accelerate, and then slew at constant speed until a transition is detected in the logic state of the Home
input. The direction of the FE motion is dependent on the state of the home switch. High level causes forward
motion. The motor will then decelerate to a stop. The acceleration rate, deceleration rate and slew speed are
specified by the user, prior to the movement, using the commands AC, DC, and SP. When using the FE command,
it is recommended that a high deceleration value be used so the motor will decelerate rapidly after sensing the
Home switch.

The Find Index routine is initiated by the command sequence: FI A, BG A. Find Index will cause the motor to
accelerate to the user-defined slew speed (SP) at a rate specified by the user with the AC command and slew until
the controller senses a change in the index pulse signal from low to high. The motor then decelerates to a stop at
the rate previously specified by the user with the DC command and then moves back to the index pulse and speed
HV. Although Find Index is an option for homing, it is not dependent upon a transition in the logic state of the
Home input, but instead is dependent upon a transition in the level of the index pulse signal.

The Standard Homing routine is initiated by the sequence of commands HM A, BG A. Standard Homing is a
combination of Find Edge and Find Index homing. Initiating the standard homing routine will cause the motor to
slew until a transition is detected in the logic state of the Home input. The motor will accelerate at the rate
specified by the command, AC, up to the slew speed. After detecting the transition in the logic state on the Home
Input, the motor will decelerate to a stop at the rate specified by the command, DC. After the motor has
decelerated to a stop, it switches direction and approaches the transition point at the speed of HV counts/sec.
When the logic state changes again, the motor moves forward (in the direction of increasing encoder count) at the
same speed, until the controller senses the index pulse. After detection, it decelerates to a stop, moves back to the
index, and defines this position as 0. The logic state of the Home input can be interrogated with the command

MG _HMA. This command returns a 0 or 1 if the logic state is low or high, respectively. The state of the Home input
can also be interrogated indirectly with the TS command.

For examples and further information about Homing, see command HM, FI, FE of the Command Reference and
the section entitled Homing in the Programming Motion Section of this manual.

Abort Input

The function of the Abort input is to immediately stop the controller upon transition of the logic state.

NOTE: The response of the abort input is significantly different from the response of an activated limit switch.
When the abort input is activated, the controller stops generating motion commands immediately, whereas the
limit switch response causes the controller to make a decelerated stop.

NOTE: The effect of an Abort input is dependent on the state of the off-on-error function (OE Command) for each
axis. If the Off-On-Error function is enabled for any given axis, the motor for that axis will be turned off when the
abort signal is generated. This could cause the motor to ‘coast’ to a stop since it is no longer under servo control. If
the Off-On-Error function is disabled, the motor will decelerate to a stop as fast as mechanically possible and the
motor will remain in a servo state.

Chapter 3 Connecting Hardware = 38 DMC-40x0 User Manual

All motion programs that are currently running are terminated when a transition in the Abort input is detected.
This can be configured with the CN command. For information see the Command Reference, OE and CN.

ELO (Electronic Lock-Out) Input

Used in conjunction with Galil amplifiers, this input allows the user the shutdown the amplifier at a hardware level.
For more detailed information on how specific Galil amplifiers behave when the ELO is triggered, see Integrated in
the Appendices.

Reset Input/Reset Button

When the Reset line is triggered the controller will be reset. The reset line and reset button will not master reset
the controller unless the MRST jumper is installed during a controller reset.

Uncommitted Digital Inputs

The DMC-40x0 has 8 optoisolated inputs. These inputs can be read individually using the function @IN [x] where x
specifies the input number (1 thru 8). These inputs are uncommitted and can allow the user to create conditional
statements related to events external to the controller. For example, the user may wish to have the x-axis motor
move 1000 counts in the positive direction when the logic state of DI1 goes high.

The Digital inputs can be used as high speed position latch inputs, see High Speed Position Capture (The Latch
Function) for more information.

This can be accomplished by connecting a voltage in the range of +5V to +28V into INCOM of the input circuitry
from a separate power supply.

4080 Controllers with more than 4 axes have an additional 8 general optoisolated inputs (inputs 9-16). The
INCOM for these inputs is found on the I/O (E-H) D-Sub connector.

An additional 32 1/0 are provided at 3.3V (5V option) through the extended I/O. These are not
optoisolated.

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 39

Optoisolated Input Electrical Information

Electrical Specifications

INCOM/LSCOM Max Voltage 24 V¢
INCOM/LSCOM Min Voltage 0 Voc
Internal resistance of inputs 2.2kQ

The current limiting resistors chosen for the inputs allow for the flexibility to have 5-24V optoisolated inputs.
Because of this added range, applications powering the inputs with 18.5 V¢ or greater with normally closed
switches may need an additional resistor to limit the current to the inputs, see the Input Current Limitations, pg
191 for more details or simply place a 1.2kQ resistor in series with INCOM/LSCOM as shown in Figure A.3 in the
Appendices.

The optoisolated inputs are powered in banks. For example, INCOM (Bank 0), located on the 44-pin |I/O (A-D) D-sub
connector, provides power to DI[8:1] (digital inputs), the abort input (ABRT), reset (RST), and electric lock-out (ELO).
Table 3.17 shows all the input banks power commons and their corresponding inputs for 1-4 axis controllers and
Table 3.18 shows the input banks for 5-8 axis controllers.

Common Signal Common Signal Location Powers Inputs Labeled
INCOM (Bank 0) I/O (A-D) D-Sub Connector DI[8:1], ABRT, RST, ELO
LSCOM (Bank 0) I/0 (A-D) D-Sub Connector FLSA, RLSA, HOMA

FLSB, RLSB, HOMB
FLSC, RLSC, HOMC
FLSD, RLSD, HOMD

Table 3.17: 1-4 axis controller INCOM and LSCOM banks and corresponding inputs powered

Common Signal Common Signal Location Powers Inputs
INCOM (Bank 0) 1/0 (A-D) D-Sub Connector DI[8:1], ABRT, RST, ELO
LSCOM (Bank 0) I/0 (A-D) D-Sub Connector FLSA, RLSA, HOMA

FLSB, RLSB, HOMB
FLSC, RLSC, HOMC
FLSD, RLSD, HOMD
INCOM (Bank 1) 1/0 (E-H) D-Sub Connector DI[16:9]

LSCOM (Bank 1) I/0 (E-H) D-Sub Connector FLSE, RLSE, HOME
FLSF, RLSF, HOMF
FLSG, RLSG, HOMG
FLSH, RLSH, HOMH

Table 3.18: 5-8 axis controller INCOM and LSCOM banks and corresponding inputs powered

The full pin-outs for each bank can be found in the Integrated Components, pg 210 under the ICM option ordered:
A10 - ICM-42000 (-1000), A11 — ICM-42100 (-1100), or A12 —I1CM-42200 (-1200).

Chapter 3 Connecting Hardware = 40 DMC-40x0 User Manual

Wiring the Optoisolated Digital Inputs

To take full advantage of optoisolation, an isolated power supply should be used to provide the voltage at the input
common connection. Connecting the ground of the isolated power to the ground of the controller will bypass
optoisolation and is not recommended if true optoisolation is desired.

If there is not an isolated supply available, the 5 Vp, 12 Ve, and GND controller references may be used to power
INCOM/LSCOM. The current supplied by the controller references are limited, see +5, +12V Power Output
Specifications, pg 180 in the Appendices for electrical specifications. Using the controller reference power
completely bypasses optoisolation and is not recommended for most applications.

Banks of inputs can be used as either active high or low. Connecting +V, to INCOM/LSCOM will configure the inputs
for active low as current will flow through the diode when the inputs are pulled to the isolated ground. Connecting
the isolated ground to INCOM/LSCOM will configure the inputs for active high as current will flow through the
diode when the inputs are pulled up to +V..

Figure 3.1 - Figure 3.5 are the optoisolated wiring diagrams for powering INCOM/LSCOM (Bank 0) and
INCOM/LSCOM (Bank 1) and their corresponding inputs.

INCOMO w——

2.2K

~ CPU
¥ =
DI[8:1]m
PS2805 ?&

Figure 3.1: Digital Inputs 1-8 (DI[8:1])

INCOM1 m—

2.2K

~ a CPU
Yo
DI[16:9]=
PS2805 i&

Figure 3.2: Digital Inputs 9-16 (DI[16:9])

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 41

+5V

LSCOMe

22K

\ a CPU
FLS_[A,B,C,D] % = EL

RLS_[A,B,C,D]
HOME_[A,B,C,D] PS2805 %
Figure 3.3: Limit Switch Inputs for Axes A-D

+5V

LscomM1

2.2K

. CPU
FLS_[E,F,G,H] %2(

RLS_[E,F,G,H]
HOME_[E,F,G,H] PS2805 K&
Figure 3.4: Limit Switch Inputs for Axes E-H

INCOMO m—

22K

a CPU
ELO % =~ E

ABRT

RST PS2805 K&

Figure 3.5: ELO, Abort and Reset Inputs

Chapter 3 Connecting Hardware = 42

DMC-40x0 User Manual

High Power Optoisolated Outputs

The DMC-40x0 has different interconnect module options, this section will describe the 500mA optically isolated
outputs that are used on the ICM-42x00.

The amount of uncommitted, optoisolated outputs the DMC-40x0 has depends on the number of axis. For
instance, 1-4 axis models come with a single bank of 8 outputs, Bank 0 (DO[8:1]). 5-8 axis models come with an
additional bank of 8 outputs, Bank 1 (DO[16:9]), for a total of 16 outputs.

The wiring pins for Bank 0 are located on the ICM-42x00 1/0 (A-D) 44 pin HD D-sub Connector and the pins for
wiring Bank 1 are located on the ICM-42x00 I/O (E-H) 44 pin HD D-sub Connector. See the the Appendix for your
ICM: A10 — ICM-42000 (-1000), A11 —1CM-42100 (-1100), or A12 — ICM-42200 (-1200) for pin-outs.

Description

The 500mA sourcing option, refereed to as high power sourcing (HSRC), is capable of sourcing up to 500mA per
output and up to 3A per bank. The voltage range for the outputs is 12-24 VDC. These outputs are capable of driving
inductive loads such as solenoids or relays. The outputs are configured for hi-side (sourcing) only.

Electrical Specifications

Output PWR Max Voltage 24 VDC
Output PWR Min Voltage 12 vDC
Max Drive Current per Output 0.5 A (maximum 3A per Bank)

Wiring the Optoisolated Outputs

The output power supply will be connected to Output PWR (labeled OPWR) and the power supply return will be
connected to Output GND (labeled ORET). Note that the load is wired between DO and Output GND. The wiring
diagram for Bank O is shown in Figure 3.6 and Bank 1 in Figure 3.7. See the “I/O 44 pin HD D-sub Connector” for
your specific ICM module in the Appendix for the correct pin-outs.

Output PWR
A\ -OPWR (D) ulpg”
+33V P 1
z< |
DO[B:1]I
CPU IRF7342 E | |
858 | LOAD
g
ORET (A-D)|
) T
Output GND

Figure 3.6: 500mA Sourcing wiring diagrams for Bank 0, DO[8:1]

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 43

Output PWR

A\ OPWR (E-H), pal
+33V P 1
z< |
D0[16;9]I

cPU IRF7342 E | |
858 | LOAD
g
ORET (E-H)|
) T
Output GND

Figure 3.7: 500mA Sourcing wiring diagram for Bank 1, DO[16:9]

TTL Inputs and Outputs

Main Encoder Inputs

The main encoder inputs can be configured for quadrature (default) or pulse and direction inputs. This
configuration is set through the CE command. The encoder connections are found on the 26 pin HD D-sub Encoder
connectors and are labeled MA+, MA-, MB+, MB-. The '-' (negative) inputs are the differential inputs to the
encoder inputs; if the encoder is a single ended 5V encoder, then the negative input should be left floating. If the

encoder is a single ended and outputs a 0-12V signal then the negative input should be tied to the 5V line on the
DMC.

When the encoders are setup as step and direction inputs the MA channel will be the step or pulse input, and the
MB channel will be the direction input.

The encoder inputs can be ordered with 1200hm termination resistors installed. See TRES — Encoder Termination
Resistors in the Appendix for more information.
Electrical Specifications
Maximum Voltage 12 vDC
Minimum Voltage -12 vDC
Maximum Frequency (Quadrature) 15 MHz
'+ inputs are internally pulled-up to 5V through a 4.7 kQ resistor
"-"inputs are internally biased to ~1.3V
pulled up to 5V through a 7.1 kQ resistor
pulled down to GND through a 2.5kQ resistor

The Auxiliary Encoder Inputs

The auxiliary encoder inputs can be used for general use. For each axis, the controller has one auxiliary encoder
and each auxiliary encoder consists of two inputs, channel A and channel B. The auxiliary encoder inputs are
mapped to the inputs 81-96. The Aux encoder inputs are not available for any axis that is configured for step and
direction outputs (stepper).

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels between + 12
volts. The inputs have been configured to accept TTL level signals. To connect TTL signals, simply connect the

Chapter 3 Connecting Hardware = 44 DMC-40x0 User Manual

signal to the + input and leave the - input disconnected. For other signal levels, the - input should be connected to
a voltage that is % of the full voltage range (for example, connect the - input to 6 volts if the signal isa 0- 12 volt
logic).

Example:

A DMC-4010 has one auxiliary encoder. This encoder has two inputs (channel A and channel B). Channel A input is
mapped to input 81 and Channel B input is mapped to input 82. To use this input for 2 TTL signals, the first signal
will be connected to AA+ and the second to AB+. AA- and AB- will be left unconnected. To access this input, use
the function @IN[81] and @IN[82].

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for stepper motor.

Electrical Specifications
Maximum Voltage 12 vDC
Minimum Voltage -12vDC
'+'inputs are internally pulled-up to 5V through a 4.7kQ resistor
'-"inputs are internally biased to ~1.3V
pulled up to 5V through a 7.1kQ resistor
pulled down to GND through a 2.5kQ resistor

Output Compare

The output compare signal is a TTL ouput signal and is available on the I/O (A-D) D-Sub connector labeled as CMP.
An additional output compare signal is available for 5-8 axes controllers on the I/O (E-H) D-sub connector.

Output compare is controlled by the position of any of the main encoder inputs on the controller. The output can
be programmed to produce either a brief, active low pulse (250 nsec) based on an incremental encoder value or to
activate once (“one shot”) when an axis position has been passed. When setup for a one shot, the output will stay
low until the OC command is called again. For further information, see the command OC in the Command
Reference.

NOTE Output compare is not valid with sampled feedback types such as: SSI, BiSS, Sin/Cos, and Analog

Electrical Specifications

Output Voltage 0-5VDC
Current Output 20 mA Sink/Source
Error Output

The controller provides a TTL signal, ERR, to indicate a controller error condition. When an error condition occurs,
the ERR signal will go low and the controller LED will go on. An error occurs because of one of the following
conditions:

1. Atleast one axis has a position error greater than the error limit. The error limit is set by using the

command ER.

2. Thereset line on the controller is held low or is being affected by noise.

3. Thereis a failure on the controller and the processor is resetting itself.

4. There is a failure with the output IC which drives the error signal.

The ERR signal is found on the I/O (A-D) D-Sub connector.

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 45

4080 For controllers with 5-8 axes, the ERR signal is duplicated on the 1/O (E-H) D-Sub connector.

For additional information see Error Light (Red LED) in Chapter 9 Troubleshooting.

Electrical Specifications
Output Voltage 0-5VDC
Current Output 20 mA Sink/Source

Analog Inputs

The DMC-40x0 has eight analog inputs configured for the range between -10V and 10V. The inputs are decoded by
a 12-bit A/D decoder giving a voltage resolution of approximately .005V. A 16-bit ADC is available as an option (Ex.
DMC-4020(-16bit)-C012-1000). The analog inputs are specified as AN[x] where x is a number 1 thru 8.

AQ settings

The analog inputs can be set to a range of +10V, £5V, 0-5V or 0-10V, this allows for increased resolution when the
full £10V is not required. The inputs can also be set into a differential mode where analog inputs 2,4,6 and 8 can be
set to the negative differential inputs for analog inputs 1,3,5 and 7 respectively. See the AQ command in the
command reference for more information.

Electrical Specifications
Input Impedance (12 and 16 bit) —
Unipolar (0-5V, 0-10V) 42kQ
Bipolar (x5V, £10V) 31kQ

Extended 1/0

The DMC-40x0 controller offers 32 extended TTL I/O points which can be configured as inputs or outputs in 8 bit
increments. Configuration is accomplished with command CO — see Extended 1/0O of the DMC-40x0 Controller The
I/0 points are accessed through the 44 pin D-Sub connector labeled EXTENDED I/O. See the Error: Reference
source not found section in the Appendix for a complete pin out of the Extended 1/0.

Electrical Specifications (3.3V — Standard)

Inputs
Max Input Voltage 3.4VDC
Guarantee High Voltage 2.0VDC
Guarantee Low Voltage 0.8 VDC

Inputs are internally pulled up to 3.3V through a 4.7kQ resistor

Chapter 3 Connecting Hardware = 46 DMC-40x0 User Manual

Outputs

Sink/Source 4mA per output

Electrical Specifications (5V — Option)

Inputs
Max Input Voltage 5.25VDC
Guarantee High Voltage 2.0VDC
Guarantee Low Voltage 0.8 VDC

Inputs are internally pulled up to 5V through a 4.7kQ resistor

Outputs
Sink/Source 20mA

External Amplifier Interface

External Stepper Control

The controller provides step and direction (STPn, DIRn) outputs for every axis available on the controller. These
outputs are typically used for interfacing to external stepper drivers, but they can be configured for a PWM output.
See the MT command for more details.
PWM/Step and Sign/Direction Electrical Specifications
Output Voltage 0-5VDC
Current Output 20 mA Sink/Source

External Servo Control

The DMC-40x0 command voltage ranges between +10V and is output on the motor command line - MCMn (where
nis A-H). This signal, along with GND, provides the input to the motor amplifiers. The amplifiers must be sized to
drive the motors and load. For best performance, the amplifiers should be configured for a torque (current) mode
of operation with no additional compensation. The gain should be set such that a 10 volt input results in the
maximum required current.

Motor Command Line Electrical Specifications

Output Voltage +10VDC
Motor Command Output Impedance 500 Q
Amplifier Enable

The DMC-40x0 also an amplifier enable signal - AENn (where n is A-H). This signal changes under the following
conditions: the motor-off command, MO, is given, the watchdog timer activates, or the OE command (Enable Off-
On-Error) is set and the position error exceeds the error limit or a limit switch is reached (see OE command in the
Command Reference for more information).

For all versions of the ICM-42x00, the default configuration of the amplifier enable signal is 5V active high amp
enable (HAEN) sinking. In other words, the AEN signal will be high when the controller expects the amplifier to be

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 47

enabled. The polarity and the amplitude can be changed by configuring the Amplifier Enable Circuit on the ICM-
42xx0.

If your amplifier requires a different configuration than the default 5V HAEN sinking it is highly recommended
that the DMC-40x0 is ordered with the desired configuration. See the DMC-40x0 ordering information in the
catalog (http://www.galilmc.com/catalog/cat40x0.pdf) or contact Galil for more information on ordering different
configurations.

Note: Many amplifiers designate the enable input as ‘inhibit’.

ICM-42000 and ICM-42100 Amplifier Enable Circuit

This section describes how to configure the ICM-42000 and ICM-42100 for different Amplifier Enable
configurations. It is advised that the user order the DMC-40x0 with the proper Amplifier enable configuration.

The ICM-42000 and ICM-42100 gives the user a broad range of options with regards to the voltage levels present
on the enable signal. The user can choose between High-Amp-Enable (HAEN), Low-Amp-Enable (LAEN), 5V logic,
12V logic, external voltage supplies up to 24V, sinking, or sourcing. Tables 3.19 and 3.20 found below illustrate the
settings for jumpers, resistor packs, and the socketed optocoupler IC. Refer to Figures 3.8 and 3.9 for precise
physical locations of all components. Note that the resistor pack located at RP2 may be reversed to change the
active state of the amplifier enable output. However, the polarity of RP6 must not be changed; a different resistor
value may be needed to limit the current to 6 mA. The default value for RP6 is 820 Q, which works at 5V. When
using 24 V, RP6 should be replaced with a 4.7 ké& resistor pack.

NOTE: For detailed step-by-step instructions on changing the Amplifier Enable configuration on the ICM-42000 or
ICM-42100 see the Configuring the Amplifier Enable Circuit section in the Appendices.

Amplifier Enable Circuit
Sinking Output Configuration
(Pin 1 of LTV8441 in Pin 2 of Socket U4)

Socket U4

o~ 0

Pin1
of socket

Amp Enable Output to Drive
(AENn)

RP2 (470 Ohm) RP6 (

820 Ohm

PIN1

% % % 7 Py il AECOM1
Il [HPint |
AV 21 -
52%% yp2
TTL level Amp [@lcelie]
Evabl sgna M 1 AECOM2
(sH- S =00 & =
¥
<
o
=
[
—
i]
EV/

Figure 3.8: Amplifier Enable Circuit Sinking Output Configuration

Chapter 3 Connecting Hardware = 48 DMC-40x0 User Manual

http://www.galilmc.com/catalog/cat40x0.pdf

Sinking Configuration (pinl of LTV8441 chip in pin2 of socket U4)

Logic State JP1 JP2 RP2 (square pin next to RP2 label is 5V)
5V, HAEN (Default configuration) 5V - AECOM1 GND — AECOM2 Dot on R-pack next to RP2 label

5V, LAEN 5V - AECOM1 GND — AECOM2 Dot on R-pack opposite RP2 label

12V, HAEN +12V — AECOM1 GND - AECOM2 Dot on R-pack next to RP2 label

12V, LAEN +12V — AECOM1 GND — AECOM2 Dot on R-pack opposite RP2 label
Isolated 24V, HAEN AEC1 - AECOM1 AEC2 — AECOM2 Dot on R-pack next to RP2 label
Isolated 24V, LAEN AEC1 - AECOM1 AEC2 - AECOM2 Dot on R-pack opposite RP2 label

For 24V isolated enable, tie +24V of external power supply to AEC1 at the D-sub, tie common return to AEC2. Replace RP6 with a 4.7 kQ
resistor pack. For Axes A-D, AEC1 and AEC2 are located on the EXTERNAL DRIVER (A-D) D-Sub connector. For Axes E-H, AEC1 and AEC2 are
located on the EXTERNAL DRIVER (E-H) D-Sub connector.
Note: AEC1 and AEC2 for axes A-D are NOT connected to AEC1 and AEC2 for axes E-H.

So<\:ket U/4
TTL level Amp .
Enable signal r j
AL X
RP2 (470 Ohm) o §
5V or GND 'IE z‘l
I
3
el
2
=
-
0]
i I
-
£/

Table 3.19: Sinking Configuration

Amplifier Enable Circuit
Sourcing Output Configuration

(Pin 1 of LTV8441 in Pin 1 of Socket U4)

(AENN)

Figure 3.9: Amplifier Enable Circuit Sourcing Output Configuration

Sourcing Configuration (pinl of LTV8441 chip in pinl of socket U4)

Logic State JP1 JP2 RP2 (square pin next to RP2 label is 5V)
5V, HAEN GND — AECOM1 5V — AECOM2 Dot on R-pack opposite RP2 label

5V, LAEN GND - AECOM1 5V — AECOM2 Dot on R-pack next to RP2 label

12V, HAEN GND — AECOM1 +12V — AECOM2 Dot on R-pack opposite RP2 label

12V, LAEN GND - AECOM1 +12V — AECOM?2 Dot on R-pack next to RP2 label
Isolated 24V, HAEN AEC1 - AECOM1 AEC2 - AECOM2 Dot on R-pack opposite RP2 label
Isolated 24V, LAEN AEC1 - AECOM1 AEC2 — AECOM2 Dot on R-pack next to RP2 label

For 24V isolated enable, tie +24V of external power supply to AEC2 at the D-sub, tie common return to AEC1. Replace RP6 with a 4.7 kQ
resistor pack. For Axes A-D, AEC1 and AEC2 are located on the EXTERNAL DRIVER (A-D) D-Sub connector. For Axes E-H, AEC1 and AEC2 are
located on the EXTERNAL DRIVER (E-H) D-Sub connector.
Note: AEC1 and AEC2 for axes A-D are NOT connected to AEC1 and AEC2 for axes E-H.

Table 3.20: Sourcing Configuration

DMC-40x0 User Manual

Chapter 3 Connecting Hardware = 49

ICM-42200 Amplifier Enable Circuit

This section describes how to configure the ICM-42200 for different Amplifier Enable outputs. The ICM-42200 is
designed to be used with external amplifiers. As a result, the amplifier enable circuit for each axis is individually
configurable through jumper settings. The user can choose between High-Amp-Enable (HAEN), Low-Amp-Enable
(LAEN), 5V logic, 12V logic, external voltage supplies up to 24V, sinking, or sourcing. Every different configuration is
described below with jumper settings and a schematic of the circuit.

+5V
+5V Rt T i
HIGH AMP ENABLE 050 = . = AEN TO DRIVE
SINKING 595 | _— ¥ = (PINZ]
SHn = 5V ~
MOn = oV
+12V
+12V | s T i
HIGH AMP ENABLE EZE = . AEN TO DRIVE
SINKING 525 | _— ¥~ (PINZ]
SHn = 5V %
MOn = oV
AMP ENABLE POWER
(PIN 20)
2| o2 "
ISOLATED SUPPLY 008 tTl/ °
HIGH AMP ENABLE 050 = . AEN TO DRIVE
SINKING 523 |1 S = (] FIN2

123456

SHn =5V
MOn = 0V

AMP ENABLE RETURN
(PIN 11)

Chapter 3 Connecting Hardware = 50

DMC-40x0 User Manual

+5V

5y < §g§ 10K
+ o ° o
LOW AMP ENABLE 250 CPU AEN - . AEN TO DRIVE
SINKING 525 | . ¥~ (PINZ
MOn = 0V 5 ?7
412V
12V) o
+
LOW AMP ENABLE CPU AEN . . AEN TO DRIVE
SINKING . ¥ = (PINz]
MOn = oV %7 %7
AMP ENABLE POWER
(PIN 20)
< 333 10K
TISOLATED SUPPLY 5%
LOW AMP ENABLE 059 CPUAEN = = . = AEN TO DRIVE
SINKING oS0 |1 S5 SF = E (PIN2)
MOn = ov
v AMP ENABLE RETURN
(PIN 11)

123456

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 51

f:j gg§ +5V
+5V 5 o § CPUAEN = _]
HIGH AMP ENABLE ggg SHn = 5V SF - E - AEN TO DRIVE
SOURCING 523 |1 Mon-ov < FIN2
10K
‘%’ g§§ 12V
+12V § ° § CPU AEN —
HIGH AMP ENABLE ggg SHn = 5V SF - E . AEN TO DRIVE
SOURCING 523 |1 Mon-0v < FIN2
10K
<[oo AMP ENABLE POWER
g| ooo (PIN 20)
ISOLATED SUPPLY ggg CPU AEN SF ~ E T
HIGH AMP ENABLE ggg SHn =5V * = AEN TO DRIVE
SOURCING oS0 |1 MOn = oV i& (PIN2)
10K
AMP ENABLE RETURN

(PIN 11)

123456

Chapter 3 Connecting Hardware = 52 DMC-40x0 User Manual

‘Z’ o gg 5V 5V
é o : o + +
o] ° o]
+3V 0% = (
LOW AMP ENABLE 060 CPU AEN . AEN TO DRIVE
SOURCING 0%0 |1 (PIN2)
SHn = 5V
MOn = oV 10K
‘Z’ ° gg +5V +2V
:E [o] o [o]
[o] o [o]
+12V 6%5 $=(
LOW AMP ENABLE 02 CPU AEN ° AEN TO DRIVE
SOURCING 0% |1 (PIN2)
SHn =5V
MOn = 0V 10K
<[oo AMP ENABLE POWER
2| 0% 5V (PIN 20)
= gog —l_
ISOLATED SUPPLY g§g %Z ~ E
LOW AMP ENABLE 02 CPU AEN ’ AEN TO DRIVE
SOURCING 0% |1 (PIN2)
SHn = 5V
MOn = oV 10K
AMP ENABLE RETURN
(PIN 11)

123456

DMC-40x0 User Manual Chapter 3 Connecting Hardware = 53

Chapter 4 Software Tools and
Communication

Introduction

The default configuration DMC-40x0, with the default CMB-41012 communication board, has two RS232 ports and
1 Ethernet port. An additional Ethernet port is available with the CMB-41022. The main RS-232 port is the data set
and can be configured through the jumpers on the top of the controller. The auxiliary RS-232 port is the data term
and can be configured with the software command CC. This configuration can be saved using the Burn (BN)
instruction. The Ethernet port(s) is a 10/100BASE-T connection that auto-negotiates the speed and half or full
duplex.

The GalilTools software package is available for PC computers running Microsoft Windows® to communicate with
the DMC-40x0 controller. This software package has been developed to operate under Windows and Linux, and
include all the necessary drivers to communicate to the controller. In addition, GalilTools includes a software
development communication library which allows users to create their own application interfaces using
programming environments such as C, C++, Visual Basic, and LabVIEW.

The following sections in this chapter are a description of the communications protocol, and a brief introduction to
the software tools and communication techniques used by Galil. At the application level, GalilTools is the basic
programs that the majority of users will need to communicate with the controller, to perform basic setup, and to
develop application code (.dmc programs) that is downloaded to the controller. At the Galil API level, the GalilTools
Communication Library is available for users who wish to develop their own custom application programs to
communicate to the controller. Custom application programs can utilize API function calls directly to our DLL’s. At
the driver level, we provide fundamental hardware interface information for users who desire to create their own
drivers.

Controller Response to Commands

Most DMC-40x0 instructions are represented by two characters followed by the appropriate parameters. Each
instruction must be terminated by a carriage return. Multiple commands may be concatenated by inserting a
semicolon between each command.

Instructions are sent in ASCII, and the DMC-40x0 decodes each ASCII character (one byte) one at a time. It takes
approximately 40msec for the controller to decode each command.

After the instruction is decoded, the DMC-40x0 returns a response to the port from which the command was
generated. If the instruction was valid, the controller returns a colon (:) or the controller will respond with a

Chapter 4 Software Tools and Communication = 54 DMC-40x0 User Manual

question mark (?) if the instruction was not valid. For example, the controller will respond to commands which are
sent via the main RS-232 port back through the RS-232 port, and to commands which are sent via the Ethernet port
back through the Ethernet port.

For instructions that return data, such as Tell Position (TP), the DMC-40x0 will return the data followed by a
carriage return, line feed and : .

It is good practice to check for : after each command is sent to prevent errors. An echo function is provided to
enable associating the DMC-40x0 response with the data sent. The echo is enabled by sending the command EO 1
to the controller.

Unsolicited Messages Generated by Controller

When the controller is executing a program, it may generate responses which will be sent via the main RS-232 port
or Ethernet ports. This response could be generated as a result of messages using the MG command OR as a result
of a command error. These responses are known as unsolicited messages since they are not generated as the
direct response to a command.

Messages can be directed to a specific port using the specific Port arguments — see the MG and CF commands in
the Command Reference. If the port is not explicitly given or the default is not changed with the CF command,
unsolicited messages will be sent to the default port. The default port is the main serial port. When
communicating via an Ethernet connection, the unsolicited messages must be sent through a handle that is not the
main communication handle from the host. The GalilTools software automatically establishes this second
communication handle.

The controller has a special command, CW, which can affect the format of unsolicited messages. This command is
used by Galil Software to differentiate response from the command line and unsolicited messages. The command,
CW1 causes the controller to set the high bit of ASCII characters to 1 of all unsolicited characters. This may cause
characters to appear garbled to some terminals. This function can be disabled by issuing the command, CW2. For
more information, see the CW command in the Command Reference.

When handshaking is used (hardware and/or software handshaking) characters which are generated by the
controller are placed in a FIFO buffer before they are sent out of the controller. The size of the RS-232 buffer is 512
bytes. When this buffer becomes full, the controller must either stop executing commands or ignore additional
characters generated for output. The command CW,1 causes the controller to ignore all output from the controller
while the FIFO is full. The command, CW ,0 causes the controller to stop executing new commands until more
room is made available in the FIFO. This command can be very useful when hardware handshaking is being used
and the communication line between controller and terminal will be disconnected. In this case, characters will
continue to build up in the controller until the FIFO is full. For more information, see the CW command in the
Command Reference.

Serial Communication Ports

The RS-232 and RS-422 (optional) are located on the CMB (communication board) of the DMC-40x0. Note that the
auxiliary port is essentially the same as the main port except inputs and outputs are reversed.

RS-232 Configuration

The pin-outs for the RS-232 ports can be found on either A8 — CMB-41012 (-C012), pg 248 or A9 — CMB-41022 (-
C022), pg 252 depending on the CMB option ordered.

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 55

Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate for the R$232
communication can be selected by setting the proper switch configuration on the front panel according to the table
below.

Baud Rate Selection

JP1JUMPER SETTINGS
BAUD RATE
19.2 384
ON ON 9600
ON OFF 19200
OFF ON 38400
OFF OFF 115200

Handshaking

The RS232 main port is set for hardware handshaking. Hardware Handshaking uses the RTS and CTS lines. The CTS
line will go high whenever the DMC-40x0 is not ready to receive additional characters. The RTS line will inhibit the
DMC-40x0 from sending additional characters. Note, the RTS line goes high for inhibit.

Auxiliary RS-232 Port Configuration

The main purpose of the auxiliary RS232 port is to connect to external devices that cannot use DMC code to
communicate. It is important to note that the Aux port is not an interpreted port and cannot receive DMC Galil
commands directly. Instead, use Cl, #HCOMINT, and the P2 operands to handle received data on this port.

NOTE: If you are connecting the RS-232 auxiliary port to a terminal or any device which is a DATASET, it is necessary
to use a connector adapter, which changes a dataset to a dataterm. This cable is also known as a 'null' modem
cable.

CC Command

The CC, or Configure Communications command, configures the auxiliary ports properties including: Baud rate,
handshaking, enable/disabled port, and echo. See the CC command in the Command Reference for a full
description and command syntax.

If the CC command is configured for hardware handshaking it is required to use the RTS and CTS lines. The RTS line
will go high whenever the DMC is not ready to receive additional characters. The CTS line will inhibit the DMC from
sending additional characters. Note, the CTS line goes high for inhibit.

RS-422 Configuration

The DMC-40x0 can be ordered with the main and/or auxiliary port configured for RS-422 communication. RS-422
communication is a differentially driven serial communication protocol that should be used when long distance
serial communication is required in an application.

See RS-422 — Serial Port Serial Communication, pg 185 for pin-outs and details of the RS-422 options.

Chapter 4 Software Tools and Communication = 56 DMC-40x0 User Manual

Ethernet Configuration

Communication Protocols

The Ethernet is a local area network through which information is transferred in units known as packets.
Communication protocols are necessary to dictate how these packets are sent and received. The DMC-40x0
supports two industry standard protocols, TCP/IP and UDP/IP. The controller will automatically respond in the
format in which it is contacted.

TCP/IP is a "connection" protocol. The master, or client, connects to the slave, or server, through a series of packet
handshakes in order to begin communicating. Each packet sent is acknowledged when received. If no
acknowledgment is received, the information is assumed lost and is resent.

Unlike TCP/IP, UDP/IP does not require a "connection". If information is lost, the controller does not return a colon
or question mark. Because UDP does not provide for lost information, the sender must re-send the packet.

It is recommended that the motion control network containing the controller and any other related devices be
placed on a “closed” network. If this recommendation is followed, UDP/IP communication to the controller may be
utilized instead of a TCP connection. With UDP there is less overhead, resulting in higher throughput. Also, there is
no need to reconnect to the controller with a UDP connection. Because handshaking is built into the Galil
communication protocol through the use of colon or question mark responses to commands sent to the controller,
the TCP handshaking is not required.

Packets must be limited to 512 data bytes (including UDP/TCP IP Header) or less. Larger packets could cause the
controller to lose communication.

NOTE: In order not to lose information in transit, the user must wait for the controller's response before sending
the next packet.

Addressing

There are three levels of addresses that define Ethernet devices. The first is the MAC or hardware address. This is
a unique and permanent 6 byte number. No other device will have the same MAC address. The DMC-40x0 MAC
address is set by the factory and the last two bytes of the address are the serial number of the board. To find the
Ethernet MAC address for a DMC-40x0 unit, use the TH command. A sample is shown here with a unit that has a
serial number of 3:

Sample MAC Ethernet Address: 00-50-4C-20-04-AF

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number that usually looks like this:
192.168.15.1. The IP address is constrained by each local network and must be assigned locally. Assigning an IP
address to the DMC-40x0 controller can be done in a number of ways.

The first method for setting the IP address is using a DHCP server. The DH command controls whether the DMC-
40x0 controller will get an IP address from the DHCP server. If the unit is set to DH1 (default) and there is a DHCP
server on the network, the controller will be dynamically assigned an IP address from the server. Setting the board
to DHO will prevent the controller from being assigned an IP address from the server.

The second method to assign an IP address is to use the BOOT-P utility via the Ethernet connection. The BOOT-P
functionality is only enabled when DH is set to 0. Either a BOOT-P server on the internal network or the Galil
software may be used. When opening the Galil Software, it will respond with a list of all DMC-40x0’s and other
controllers on the network that do not currently have IP addresses. The user must select the board and the
software will assign the specified IP address to it. This address will be burned into the controller (BN) internally to
save the IP address to the non-volatile memory.

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 57

NOTE: if multiple boards are on the network — use the serial numbers to differentiate them.

Be sure that there is only one BOOT-P or DHCP server running. If your network has DHCP
or BOOT-P running, it may automatically assign an IP address to the DMC-40x0 controller

CAUTION upon linking it to the network. In order to ensure that the IP address is correct, please
contact your system administrator before connecting the I/O board to the Ethernet
network.

The third method for setting an IP address is to send the IA command through the RS-232 port. (Note: The IA
command is only valid if DHO is set). The IP address may be entered as a 4 byte number delimited by commas
(industry standard uses periods) or a signed 32 bit number (e.g. IA 124,51,29,31 or IA 2083724575). Type in BN to
save the IP address to the DMC-40x0 non-volatile memory.

NOTE: Galil strongly recommends that the IP address selected is not one that can be accessed across the Gateway.
The Gateway is an application that controls communication between an internal network and the outside world.

The third level of Ethernet addressing is the UDP or TCP port number. The Galil board does not require a specific
port number. The port number is established by the client or master each time it connects to the DMC-40x0 board.
Typical port numbers for applications are:

Port 23: Telnet
Port 502: Modbus

Communicating with Multiple Devices

The DMC-40x0 is capable of supporting multiple masters and slaves. The masters may be multiple PC's that send
commands to the controller. The slaves are typically peripheral I/O devices that receive commands from the
controller.

NOTE: The term "Master" is equivalent to the internet "client". The term "Slave" is equivalent to the internet
"server".

An Ethernet handle is a communication resource within a device. The DMC-40x0 can have a maximum of 8
Ethernet handles open at any time. When using TCP/IP, each master or slave uses an individual Ethernet handle. In
UDP/IP, one handle may be used for all the masters, but each slave uses one. (Pings and ARPs do not occupy
handles.) If all 8 handles are in use and a 9™ master tries to connect, it will be sent a "reset packet" that generates
the appropriate error in its windows application.

NOTE: There are a number of ways to reset the controller. Hardware reset (push reset button or power down
controller) and software resets (through Ethernet or RS232 by entering RS).

When the Galil controller acts as the master, the IH command is used to assign handles and connect to its slaves.
The IP address may be entered as a 4 byte number separated with commas (industry standard uses periods) or as a
signed 32 bit number. A port number may also be specified, but if it is not, it will default to 1000. The protocol
(TCP/IP or UDP/IP) to use must also be designated at this time. Otherwise, the controller will not connect to the
slave. (Ex. IHB=151,25,255,9<179>2 This will open handle #2 and connect to the IP address 151.25.255.9, port
179, using TCP/IP)

Which devices receive what information from the controller depends on a number of things. If a device queries the
controller, it will receive the response unless it explicitly tells the controller to send it to another device. If the
command that generates a response is part of a downloaded program, the response will route to whichever port is
specified as the default (unless explicitly told to go to another port with the CF command). To designate a specific
destination for the information, add {Eh} to the end of the command. (Ex. MG{EC}"Hello" will send the message
"Hello" to handle #3. TP, ?{EF} will send the z axis position to handle #6.)

Chapter 4 Software Tools and Communication = 58 DMC-40x0 User Manual

Multicasting

A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the network gets the
information) but specific to a group. In other words, all devices within a specified group will receive the
information that is sent in a multicast. There can be many multicast groups on a network and are differentiated by
their multicast IP address. To communicate with all the devices in a specific multicast group, the information can
be sent to the multicast IP address rather than to each individual device IP address. All Galil controllers belong to a
default multicast address of 239.255.19.56. The controller's multicast IP address can be changed by using the IA>u
command.

Using Third Party Software

Galil supports DHCP, ARP, BOOT-P, and Ping which are utilities for establishing Ethernet connections. DHCP is a
protocol used by networked devices (clients) to obtain the parameters necessary for operation in an Internet
Protocol network. ARP is an application that determines the Ethernet (hardware) address of a device at a specific
IP address. BOOT-P is an application that determines which devices on the network do not have an IP address and
assigns the IP address you have chosen to it. Ping is used to check the communication between the device at a
specific IP address and the host computer.

The DMC-40x0 can communicate with a host computer through any application that can send TCP/IP or UDP/IP
packets. A good example of this is Telnet, a utility that comes with most Windows systems.

Modbus

An additional protocol layer is available for speaking to I/0 devices. Modbus is an RS-485 protocol that packages
information in binary packets that are sent as part of a TCP/IP packet. In this protocol, each slave has a 1 byte slave
address. The DMC-40x0 can use a specific slave address or default to the handle number. The port number for
Modbus is 502.

The Modbus protocol has a set of commands called function codes. The DMC-40x0 supports the 10 major function

codes:
Function Code | Definition
01 Read Coil Status (Read Bits)
02 Read Input Status (Read Bits)
03 Read Holding Registers (Read Words)
04 Read Input Registers (Read Words)
05 Force Single Coil (Write One Bit)
06 Preset Single Register (Write One Word)
07 Read Exception Status (Read Error Code)
15 Force Multiple Coils (Write Multiple Bits)
16 Preset Multiple Registers (Write Words)
17 Report Slave ID

The DMC-40x0 provides three levels of Modbus communication. The first level allows the user to create a raw
packet and receive raw data. It uses the MBh command with a function code of —1. The format of the command is

MBh = -1,len,array[] where len is the number of bytes
array[] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration and special
commands to an I/O device. The formats vary depending on the function code that is called. For more information
refer to the Command Reference.

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 59

The third level of Modbus communication uses standard Galil commands. Once the slave has been configured, the
commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For example, AO 2020,8.2 would tell I/0
number 2020 to output 8.2 volts.

If a specific slave address is not necessary, the I/0O number to be used can be calculated with the following:
I/0 Number = (HandleNum*1000) + ((Module-1)*4) + (BitNum-1)

Where HandleNum is the handle number from 1 (A) to 8 (H). Module is the position of the module in the rack from
1 to 16. BitNum is the I/O point in the module from 1 to 4.

Modbus Examples

Example #1

DMC-4040 connected as a Modbus master to a RI0-47120 via Modbus. The DMC-4040 will set or clear all 16 of the
RIO’s digital outputs

1. Begin by opening a connection to the RIO which in our example has IP address 192.168.1.120
IHB=192,168,1,120<502>2 (Issued to DMC-4040)

2. Dimension an array to store the commanded values. Set array element 0 equal to 170 and array element 1
equal to 85. (array element 1 configures digital outputs 15-8 and array element 0 configures digital
outputs 7-0)

DM myarray|[2]
myarray[0] = 170 (which is 10101010 in binary)
myarray[1] = 85 (which is 01010101in binary)

3. a) Send the appropriate MB command. Use function code 15. Start at output 0 and set/clear all 16
outputs based on the data in myarray[]

MBB=,15,0,16,myarray(]
3. b) Setthe outputs using the SB command.

SB2001;5SB2003;SB2005;5B2007;SB2008;SB2010;SB2012;5B2014;

Results:

Both steps 3a and 3b will result in outputs being activated as below. The only difference being that step 3a will set
and clear all 16 bits where as step 3b will only set the specified bits and will have no affect on the others.

Bit Number Status Bit Number Status
0 0 8 1
1 1 9 0
2 0 10 1
3 1 11 0
4 0 12 1
5 1 13 0
6 0 14 1
7 1 15 0

Chapter 4 Software Tools and Communication = 60 DMC-40x0 User Manual

Example #2

DMC-4040 connected as a Modbus master to a 3rd party PLC. The DMC-4040 will read the value of analog inputs 3
and 4 on the PLC located at addresses 40006 and 40008 respectively. The PLC stores values as 32-bit floating point

numbers which is common.

1. Begin by opening a connection to the PLC which has an IP address of 192.168.1.10 in our example

IHB=192,168,1,10<502>2

2. Dimension an array to store the results

DM myanalog[4]
3. Send the appropriate MB command. Use function code 4 (as specified per the PLC). Start at address
40006. Retrieve 4 modbus registers (2 modbus registers per 1 analog input, as specified by the PLC)

MBB=,4,40006,4,myanalog]]

Results:

Array elements 0 and 1 will make up the 32 bit floating point value for analog input 3 on the PLC and array
elements 2 and 3 will combine for the value of analog input 4.

myanalog[0]=16412=0x401C
myanalog[1]=52429=0xCCCD
myanalog[2]=49347=0xC0C3
myanalog[3]=13107=0x3333

Analog input 3 = 0x401CCCCD = 2.45V
Analog input 4 = 0xC0C33333 =-6.1V

Example #3

DMC-4040 connected as a Modbus master to a hydraulic pump. The DMC-4040 will set the pump pressure by
writing to an analog output on the pump located at Modbus address 30000 and consisting of 2 Modbus registers

forming a 32 bit floating point value.

1. Begin by opening a connection to the pump which has an IP address of 192.168.1.100 in our example

IHB=192,168,1,100<502>2

2. Dimension and fill an array with values that will be written to the PLC

DM pump|2]
pump[0]=16531=0x4093
pump([1]=13107=0x3333
3. Send the appropriate MB command. Use function code 16. Start at address 30000 and write to 2 registers
using the data in the array pumpl]

MBB=,16,30000,2,pump(]

Results:
Analog output will be set to 0x40933333 which is 4.6V

To view an example procedure for communicating with an OPTO-22 rack, refer to Error: Reference source not found
in the Appendices.

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 61

Data Record

The DMC-40x0 can provide a binary block of status information with the use of the QR and DR commands. These
commands, along with the QZ command can be very useful for accessing complete controller status. The QR
command will return 4 bytes of header information and specific blocks of information as specified by the command
arguments:

QR ABCDEFGHST

Each argument corresponds to a block of information according to the Data Record Map below. If no argument is
given, the entire data record map will be returned. Note that the data record size will depend on the number of

axes.

ADDR
00
01
02
03

04-05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26-27

28-29

TYPE
uB
uB
uB
UB

Uw
UB
UB
UB
UB
UB
uB
uB
uB
uB
uB
UB
uB
UB
UB
UB
UB
uB
uB
uB
uB

SW

SW

Data Record Map Key
Acronym Meaning
UB Unsigned byte
uw Unsigned word
SwW Signed word
SL Single long record
UL Unsigned long

General Controller Information and Status

ITEM

1% Byte of Header

2" Byte of Header

3" Byte of Header

4" Byte of Header

sample number

general input block 0 (inputs 1-8)
general input block 1 (inputs 9-16)
general input block 2 (inputs 17-24)
general input block 3 (inputs 25-32)
general input block 4 (inputs 33-40)
general input block 5 (inputs 41-48)
general input block 6 (inputs 49-56)
general input block 7 (inputs 57-64)
general input block 8 (inputs 65-72)
general input block 9 (inputs 73-80)
general output block 0 (outputs 1-8)

general output block 1 (outputs 9-16)

general output block 2 (outputs 17-24)
general output block 3 (outputs 25-32)
general output block 4 (outputs 33-40)
general output block 5 (outputs 41-48)
general output block 6 (outputs 49-56)
general output block 7 (outputs 57-64)
general output block 8 (outputs 65-72)
general output block 9 (outputs 73-80)

Reserved
Reserved

ADDR TYPE
30-31 SW
32-33 SW
34-35 SW
36-37 SW
38-39 SW
40-41 SW

42 uB
43 uB
44 uB
45 uB
46 uB
47 uB
48 UuB
49 UB
50 UB
51 uB
52-55 uL
56-59 uL
60-61 uw
62-63 uw
64-65 uw
66-69 SL
70-71 uw
72-73 uw
74-75 uw
76-79 SL
80-81 uw

ITEM

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Ethernet Handle A Status

Ethernet Handle B Status

Ethernet Handle C Status

Ethernet Handle D Status

Ethernet Handle E Status

Ethernet Handle F Status

Ethernet Handle G Status

Ethernet Handle H Status

error code

thread status — see bit field map below

Amplifier Status

Segment Count for Contour Mode

Buffer space remaining — Contour Mode

segment count of coordinated move for S plane
coordinated move status for S plane — see bit field map
distance traveled in coordinated move for S plane
Buffer space remaining — S Plane

segment count of coordinated move for T plane
Coordinated move status for T plane — see bit field map
distance traveled in coordinated move for T plane
Buffer space remaining — T Plane

Chapter 4 Software Tools and Communication = 62

DMC-40x0 User Manual

ADDR
82-83
84
85
86-89
90-93
94-97
98-101
102-105
106-109
110-111
112
113
114-117
118-119
120
121
122-125
126-129
130-133
134-137
138-141
142-145
146-147
148
149
150-153
154-155
156
157
158-161
162-165
166-169
170-173
174-177
178-181
182-183
184
185
186-189
190-191
192
193
194-197
198-201
202-205
206-209
210-213
214-217
218-219
220
221
222-225

TYPE
uw
UB
UB
SL
SL
SL
SL
SL
SL
SWor UW*
uB
uB
SL
uw
UB
UB
SL
SL
SL
SL
SL
SL
SWor UW*
uB
UB
SL
uw
UB
UB
SL
SL
SL
SL
SL
SL
SWor UW*
UB
UB
SL
uw
UB
UB
SL
SL
SL
SL
SL
SL
SWor UW*
UB
UB
SL

ITEM
A axis status — see bit field map below
A axis switches — see bit field map below
A axis stop code
A axis reference position
A axis motor position
A axis position error
A axis auxiliary position
A axis velocity
A axis torque
A axis analog input
A Hall Input Status
Reserved
A User defined variable (ZA)
B axis status — see bit field map below
B axis switches — see bit field map below
B axis stop code
B axis reference position
B axis motor position
B axis position error
B axis auxiliary position
B axis velocity
B axis torque
B axis analog input
B Hall Input Status
Reserved
B User defined variable (ZA)
C axis status — see bit field map below
C axis switches — see bit field map below
C axis stop code
C axis reference position
C axis motor position
C axis position error
C axis auxiliary position
C axis velocity
C axis torque
C axis analog input
C Hall Input Status
Reserved
C User defined variable (ZA)
D axis status — see bit field map below
D axis switches — see bit field map below
D axis stop code
D axis reference position
D axis motor position
D axis position error
D axis auxiliary position
D axis velocity
D axis torque
D axis analog input
D Hall Input Status
Reserved
D User defined variable (ZA)

Axis Information
ADDR

226-227
228

229

230-233
234-237
238-241
242-245
246-249
250-253
254-255
256

257

258-261
262-263
264

265

266-269
270-273
274-277
278-281
282-285
286-289
290-291
292

293

294-297
298-299
300

301

302-305
306-309
310-313
314-317
318-321
322-325
326-327
328

329

330-333
334-335
336

337

338-341
342-345
346-349
350-353
354-357
358-361
362-363
364

365

366-369

TYPE
uw
uB
uB
SL
SL
SL
SL
SL
SL
SWor UW*
uB
UB
SL
uw
uB
uUB
SL
SL
SL
SL
SL
SL
SWor UW*
UB
uB
SL
uw
uUB
uB
SL
SL
SL
SL
SL
SL
SWor UW*
uB
uB
SL
uw
uB
UB
SL
SL
SL
SL
SL
SL
SWor UW*
uB
uB
SL

ITEM
E axis status — see bit field map below
E axis switches — see bit field map below
E axis stop code
E axis reference position
E axis motor position
E axis position error
E axis auxiliary position
E axis velocity
E axis torque
E axis analog input
E Hall Input Status
Reserved
E User defined variable (ZA)
F axis status — see bit field map below
F axis switches — see bit field map below
F axis stop code
F axis reference position
F axis motor position
F axis position error
F axis auxiliary position
F axis velocity
F axis torque
F axis analog input
F Hall Input Status
Reserved
F User defined variable (ZA)
G axis status — see bit field map below
G axis switches — see bit field map below
G axis stop code
G axis reference position
G axis motor position
G axis position error
G axis auxiliary position
G axis velocity
G axis torque
G axis analog input
G Hall Input Status
Reserved
G User defined variable (ZA)
H axis status — see bit field map below
H axis switches — see bit field map below
H axis stop code
H axis reference position
H axis motor position
H axis position error
H axis auxiliary position
H axis velocity
H axis torque
H axis analog input
H Hall Input Status
Reserved
H User defined variable (ZA)

L Wil be either a Signed Word or Unsigned Word depending upon AQ setting. See AQ in the Command Reference for more information.

DMC-40x0 User Manual

Chapter 4 Software Tools and Communication = 63

Data Record Bit Field Maps

Header Information - Byte 0, 1 of Header:

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT9 BIT 8
| Block Present | T Block Present | S Block Present
! N/A N/A N/A N/A in Data Record | in Data Record | in Data Record
BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO
H Block Present |G Block Present| F Block Present [E Block Present|D Block Present|C Block Present|B Block Present | A Block Present
in Data Record | in Data Record | in Data Record | in Data Record | in Data Record | in Data Record | in Data Record | in Data Record

Bytes 2, 3 of Header:

Bytes 2 and 3 make a word which represents the Number of bytes in the data record, including the header.

Byte 2 is the low byte and byte 3 is the high byte
NOTE: The header information of the data records is formatted in little endian (reversed network byte order)

Thread Status (1 Byte)

BIT7 BIT 6 BITS5 BIT 4 BIT 3 BIT 2 BIT1 BITO
Thread 7 Thread 6 Thread 5 Thread 4 Thread 3 Thread 2 Thread 1 Thread 0
Running Running Running Running Running Running Running Running
Coordinated Motion Status for S or T Plane (2 Byte)

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT9 BIT 8
Move in N/A N/A N/A N/A N/A N/A N/A
Progress

BIT7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT1 BITO

Motion is
Motion is
Motion is stopping due to .
N/A N/A slewing ST or Limit making fl.nal N/A N/A N/A
. deceleration
Switch
Axis Status (1 Word)
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT9 BIT 8
2" Phase of HM Mode of
Move in Mode of Mode of (FE) Find Edge | Home (HM) in | 1* Phase of HM | complete or FI .
) . R Motion Coord.
Progress Motion PA or PR| Motion PA only| in Progress Progress complete command Motion
issued
BIT7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT1 BITO
Motion is
. Mode of L K Motion is
. Negatlve Motion Motpn s |stopping .du.e to making final | Latch is armed 3rd. Phase of Motor Off
Direction Move slewing ST of Limit . HM in Progress
Contour) deceleration
Switch
Axis Switches (1 Byte)
BIT7 BIT 6 BITS5 BIT 4 BIT 3 BIT 2 BIT1 BITO
Latch Occurred State of Latch N/A N/A State of ' State O.f R'everse State of Home | Stepper Mode
Input Forward Limit Limit Input

Chapter 4 Software Tools and Communication = 64 DMC-40x0 User Manual

Amplifier Status (4 Bytes)

BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24
ELO Active ELO Active
N/A N/A N/A N/A N/A N/A (Axis E-H) (Axis A-D)
BIT 23 BIT 22 BIT 21 BIT 20 BIT 19 BIT 18 BIT 17 BIT 16
Peak Current Peak Current Peak Current Peak Current Peak Current Peak Current Peak Current Peak current
H-axis G-axis F-axis E-axis D-axis C-axis B-axis A-axis
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT9 BIT 8
Hall Error Hall Error Hall Error Hall Error Hall Error Hall Error Hall Error Hall Error
H-axis G-axis F-axis E-axis D-axis C-axis B-axis A-axis
BIT7 BIT 6 BIT5 BIT 4 BIT 3 BIT 2 BIT1 BITO
Under Voltage Over Temp. Over Voltage Over Current Under Voltage Over Temp. Over Voltage Over Current
Axis (E-H) Axis (E-H) Axis (E-H) Axis (E-H) Axis (A-D) Axis (A-D) Axis (A-D) Axis (A-D)

Notes Regarding Velocity and Torque Information

The velocity information that is returned in the data record is 64 times larger than the value returned when using
the command TV (Tell Velocity). See command reference for more information about TV.

The Torque information is represented as a number in the range of £32767. Maximum negative torque is -32767.
Maximum positive torque is 32767. Zero torque is 0.

QZ Command

The QZ command can be very useful when using the QR command, since it provides information about the
controller and the data record. The QZ command returns the following 4 bytes of information.

BYTE# |INFORMATION
Number of axes present

number of bytes in general block of data record

number of bytes in coordinate plane block of data record

W|N | = |O

Number of Bytes in each axis block of data record

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 65

GalilSuite (Windows and Linux)

GalilSuite is Galil's latest set of development tools for the latest generation of Galil controllers. It is highly
recommended for all first-time purchases of Galil controllers as it provides easy set-up, tuning and analysis.
GalilSuite replaces GalilToolS with an improved user-interface, real-time scopes, advanced tuning methods, and
communications utilities.

Supported Controllers
*DMC40x0
*DMC41x3
*DMC30010
*DMC21x3/2
*RIO47xxx
*DMC18x6 - PCI Driver required, separate installer
*DMC18x0 - PCI Driver required, separate installer
DMC18x2 - PCI Driver required, separate installer
Contact Galil for other hardware products

Supported Operating Systems**
*Microsoft Windows 8
*Microsoft Windows 7
*Microsoft Windows XP SP3
*Scope, Watch, and Viewer support require an Ethernet or PCI connection and controller firmware
supporting the DR command

* No Scope, Watch, or Viewer support.
** Contact Galil for other OS options.

The GalilSuitecontains the following tools:

Tool Description

Launcher Launcher Tool with the ability to create custom profiles to manage controller connections
Terminal For sending and receiving Galil commands

Editor To easily create and work on multiple Galil programs simultaneously

Viewer To see a complete status of all controllers on a single screen

Scope For viewing and manipulating data for multiple controllers real-time

Watch For simplified debugging of any controller on the system and a display of /0 and motion status

Tuner With up to four methods for automatic and manual PID tuning of servo systems

Configuration For modifying controller settings, backup/restore and firmware download

The latest version of GalilSuite can be downloaded here:

http://www.galilmc.com/support/software-downloads.php

For information on using GalilSuite see the user manual:

http://www.galilmc.com/support/manuals.php

Chapter 4 Software Tools and Communication = 66 DMC-40x0 User Manual

http://www.galilmc.com/support/manuals.php
http://www.galilmc.com/support/software-downloads.php

Creating Custom Software Interfaces

Galil provides programming tools so that users can develop their own custom software interfaces to a Galil
controller. For new applications, Galil recommends the GalilTools Communication Libraries.

HelloGalil — Quick Start to PC programming

For programmers developing Windows applications that communicate with a Galil controller, the HelloGalil library
of quick start projects immediately gets you communicating with the controller from the programming language of
your choice. In the "Hello World" tradition, each project contains the bare minimum code to demonstrate
communication to the controller and simply prints the controller's model and serial numbers to the screen Figure
4.1.

o= Formd =]
GalilClaz=0.dl 0.5.0.0

Galilt.di1.4.4

192.168.2.83, DMC4040 Rew 1.0c, 3383, IHB IHC

MG TIME 98437018

Figure 4.1: Sample program output

http://www.galilmc.com/support/hello_galil.html|

Galil Communication Libraries

The Galil Communication Library (Galil class) provides methods for communication with a Galil motion controller
over Ethernet, RS-232 or PCl buses. It consists of a native C++ Library and a similar COM interface which extends
compatibility to Windows programming languages (e.g. VB, C#, etc).

A Galil object (usually referred to in sample code as "g") represents a single connection to a Galil controller.

For Ethernet controllers, which support more than one connection, multiple objects may be used to communicate
with the controller. An example of multiple objects is one Galil object containing a TCP handle to a DMC-40x0 for
commands and responses, and one Galil object containing a UDP handle for unsolicited messages from the
controller. If recordsStart() is used to begin the automatic data record function, the library will open an additional
UDP handle to the controller (transparent to the user).

The library is conceptually divided into six categories:
1. Connecting and Disconnecting - functions to establish and discontinue communication with a controller.

2. Basic Communication - The most heavily used functions for command-and-response and unsolicited
messages.

Programs - Downloading and uploading embedded programs.
Arrays - Downloading and uploading array data.

Advanced - Lesser-used calls.

o v W

Data Record - Access to the data record in both synchronous and asynchronous modes.

DMC-40x0 User Manual Chapter 4 Software Tools and Communication = 67

http://www.galilmc.com/support/manuals/galiltools/library.html#recordsStart
http://www.galilmc.com/support/hello_galil.html

C++ Library (Windows and Linux)

Both Full and Lite versions of GalilTools ship with a native C++ communication library. The Linux version (libGalil.so)
is compatible with g++ and the Windows version (Galil1.dll) with Visual C++ 2008. Contact Galil if another version
of the C++ library is required. See the getting started guide and the hello.cpp example in /lib.

COM (Windows)

To further extend the language compatibility on Windows, a COM (Component Object Model) class built on top of
the C++ library is also provided with Windows releases. This COM wrapper can be used in any language and IDE
supporting COM (Visual Studio 2005, 2008, etc). The COM wrapper includes all of the functionality of the base C++
class. See the getting started guide and the hello.* examples in \lib for more info.

For more information on the GalilTools Communications Library, see the online user manual.

http://www.galilmc.com/support/manuals/galiltools/library.html

Chapter 4 Software Tools and Communication = 68 DMC-40x0 User Manual

http://www.galilmc.com/support/manuals/galiltools/library.html
http://www.galilmc.com/support/manuals/galiltools/hello.html
http://www.galilmc.com/support/manuals/galiltools/hello.html

Chapter 5 Command Basics

Introduction

The DMC-40x0 provides over 100 commands for specifying motion and machine parameters. Commands are
included to initiate action, interrogate status and configure the digital filter. These commands are sent in ASCII.

The DMC-40x0 instruction set is BASIC-like and easy to use. Instructions consist of two uppercase letters that
correspond phonetically with the appropriate function. For example, the instruction BG begins motion, and ST
stops the motion.

Commands can be sent "live" over the communications port for immediate execution by the DMC-40x0, or an
entire group of commands can be downloaded into the DMC-40x0 memory for execution at a later time.
Combining commands into groups for later execution is referred to as Applications Programming and is discussed in
the following chapter.

This section describes the DMC-40x0 instruction set and syntax. A summary of commands as well as a complete
listing of all DMC-40x0 instructions is included in the Command Reference.

Command Syntax - ASCII

DMC-40x0 instructions are represented by two ASCIl upper case characters followed by applicable arguments. A
space may be inserted between the instruction and arguments. A semicolon or <return> is used to terminate the
instruction for processing by the DMC-40x0 command interpreter.

NOTE: If you are using a Galil terminal program, commands will not be processed until an <return>command is
given. This allows the user to separate many commands on a single line and not begin execution until the user
gives the <return> command.

NOTE All DMC commands are two-letters sent in upper case!

For example, the command
PR 4000 <return> Position relative

Implicit Notation

PR is the two character instruction for position relative. 4000 is the argument which represents the required
position value in counts. The <return> terminates the instruction. The space between PR and 4000 is optional.

DMC-40x0 User Manual Chapter 5 Command Basics = 69

For specifying data for the A,B,C and D axes, commas are used to separate the axes. If no data is specified for an
axis, a comma is still needed as shown in the examples below. If no data is specified for an axis, the previous value
is maintained.

To view the current values for each command, type the command followed by a ? for each axis requested.

PR 1000 Specify A only as 1000
PR ,2000 Specify B only as 2000
PR ,, 3000 Specify C only as 3000
PR ,,,4000 Specify D only as 4000
PR 2000, 4000,6000, 8000 Specify A,B,C and D
PR ,8000,,9000 Specify B and D only
PR ?,?,2,7 Request A,B,C,D values
PR ,? Request B value only

Explicit Notation

The DMC-40x0 provides an alternative method for specifying data. Here data is specified individually using a single

axis specifier such as A, B, C or D. An equals sign is used to assign data to that axis. For example:
PRA=1000 Specify a position relative movement for the A axis of 1000
ACB=200000 Specify acceleration for the B axis as 200000

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST AB stops
motion on both the A and B axes. Commas are not required in this case since the particular axis is specified by the
appropriate letter A, B, C or D. If no parameters follow the instruction, action will take place on all axes. Here are
some examples of syntax for requesting action:

BG A Begin A only
BG B Begin B only
BG ABCD Begin all axes
BG BD Begin B and D only
BG Begin all axes
4080 For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H. The specifiers X,Y,Z,W

and A,B,C,D may be used interchangeably.

BG ABCDEFGH Begin all axes
BG D Begin D only

Coordinated Motion with more than 1 axis

When requesting action for coordinated motion, the letter S or T is used to specify the coordinated motion. This
allows for coordinated motion to be setup for two separate coordinate systems. Refer to the CA command in the
Command Reference for more information on specifying a coordinate system. For example:

BG S Begin coordinated sequence, S
BG TD Begin coordinated sequence, T, and D axis

Controller Response to DATA

The DMC-40x0 returns a : for valid commands and a ? for invalid commands.

For example, if the command BG is sent in lower case, the DMC-40x0 will return a ?.

:bg invalid command, lower case
? DMC-40x0 returns a ?

When the controller receives an invalid command the user can request the error code. The error code will specify
the reason for the invalid command response. To request the error code type the command TC1. For example:

Chapter 5 Command Basics = 70 DMC-40x0 User Manual

?TC1 Tell Code command
1 Unrecognized command Returned response

There are many reasons for receiving an invalid command response. The most common reasons are: unrecognized
command (such as typographical entry or lower case), command given at improper time (such as during motion),
or a command out of range (such as exceeding maximum speed). A complete listing of all codes is listed in the TC
command in the Command Reference section.

Interrogating the Controller

Interrogation Commands

The DMC-40x0 has a set of commands that directly interrogate the controller. When the command is entered, the
requested data is returned in decimal format on the next line followed by a carriage return and line feed. The
format of the returned data can be changed using the Position Format (PF), Variable Format (VF) and Leading Zeros
(LZ) command. See Chapter 7 Application Programming and the Command Reference.

Summary of Interrogation Commands

RP Report Command Position
RL Report Latch
"RV Firmware Revision Information
SC Stop Code

TA Tell Amplifier Error

B Tell Status

TC Tell Error Code

TD Tell Dual Encoder

TE Tell Error

TI Tell Input

TP Tell Position

TR Trace

TS Tell Switches

TT Tell Torque

v Tell Velocity

For example, the following example illustrates how to display the current position of the X axis:

TP A Tell position A

0 Controllers Response
TP AB Tell position A and B
0,0 Controllers Response

Interrogating Current Commanded Values.

Most commands can be interrogated by using a question mark (?) as the axis specifier. Type the command
followed by a ? for each axis requested.
PR 2,7?2,7?,7 Request A,B,C,D values

PR ,? Request B value only

The controller can also be interrogated with operands.

DMC-40x0 User Manual

Chapter 5 Command Basics = 71

Operands

Most DMC-40x0 commands have corresponding operands that can be used for interrogation. Operands must be
used inside of valid DMC expressions. For example, to display the value of an operand, the user could use the
command:

MG ‘operand’ where ‘operand’ is a valid DMC operand

All of the command operands begin with the underscore character (_). For example, the value of the current
position on the A axis can be assigned to the variable ‘V’ with the command:

V=_TPA

The Command Reference denotes all commands which have an equivalent operand as "Operand Usage". Also, see
description of operands in Chapter 7 Application Programming.

Command Summary
For a complete command summary, see Command Reference manual.

http://www.galilmc.com/support/manuals.php

Chapter 5 Command Basics = 72 DMC-40x0 User Manual

http://www.galilmc.com/support/manuals.php

Chapter 6 Programming Motion

Overview

The DMC-40x0 provides several modes of motion, including independent positioning and jogging, coordinated
motion, electronic cam motion, and electronic gearing. Each one of these modes is discussed in the following

sections.

The DMC-4010 are single axis controllers and use X-axis motion only. Likewise, the DMC-4020 use X and Y, the
DMC-4030 use XY, and Z, and the DMC-4040 use X,Y,Z, and W. The DMC-4050 use A,B,C,D, and E. The DMC-4060
use A,B,C,D,E, and F. The DMC-4070 use A,B,C,D,E,F, and G. The DMC-4080 use the axes A,B,C,D,E,F,G, and H.

The example applications described below will help guide you to the appropriate mode of motion.

master such as conveyer speed.

Gearing

4080 For controllers with 5 or more axes, the specifiers, ABCDEFGH, are used. XYZ and W may be interchanged
with ABCD.

EXAMPLE APPLICATION MODE OF MOTION COMMANDS
Absolute or relative positioning where each Independent Axis Positioning PA, PR, SP, AC, DC
axis is independent and follows prescribed
velocity profile.
Velocity control where no final endpoint is Independent Jogging JG, AC, DC, ST
prescribed. Motion stops on Stop command.
Absolute positioning mode where absolute Position Tracking PA, AC, DC, SP, PT
position targets may be sent to the controller
while the axis is in motion.
Motion Path described as incremental position | Contour Mode cM, CD, DT
points versus time.
Motion Path described as incremental PVT Mode PV, BT
position, velocity and delta time
2 to 8 axis coordinated motion where path is Linear Interpolation Mode M, LI, LE, VS,VR,
described by linear segments. VA, VD
2-D motion path consisting of arc segments Vector Mode: Linear and Circular Interpolation vM, VP, CR, VS,VR,
and linear segments, such as engraving or Motion VA, VD, VE
quilting.
Third axis must remain tangent to 2-D motion | Coordinated motion with Tangent Motion: vM, VP, CR, VS,VA,VD,
path, such as knife cutting. TN, VE
Electronic gearing where slave axes are scaled | Error: Reference source not found GA, GD, _GP, GR, GM
to master axis which can move in both (1f gantry)
directions.
Master/slave where slave axes must follow a Error: Reference source not found with Ramped | GA, GD, _GP, GR

DMC-40x0 User Manual

Chapter 6 Programming Motion = 73

Moving along arbitrary profiles or Contour Mode cM, CD, DT

mathematically prescribed profiles such as

sine or cosine trajectories.

Teaching or Record and Play Back Contour Mode with Teach (Record and Play- cM, CD, DT, RA, RD,
Back) RC

Backlash Correction Dual Loop (Auxiliary Encoder) DV

Following a trajectory based on a master Electronic Cam EA, EM, EP, ET, EB,

encoder position EG, EQ

Smooth motion while operating in Independent Motion Smoothing IT

independent axis positioning

Smooth motion while operating in vector or Motion Smoothing IT

linear interpolation positioning

Smooth motion while operating with stepper | Using the KS Command (Step Motor Smoothing): | KS

motors

Gantry - two axes are coupled by gantry Example - Gantry Mode GR, GM

Independent Axis Positioning

In this mode, motion between the specified axes is independent, and each axis follows its own profile. The user
specifies the desired absolute position (PA) or relative position (PR), slew speed (SP), acceleration ramp (AC), and
deceleration ramp (DC), for each axis. On begin (BG), the DMC-40x0 profiler generates the corresponding
trapezoidal or triangular velocity profile and position trajectory. The controller determines a new command
position along the trajectory every sample period until the specified profile is complete. Motion is complete when
the last position command is sent by the DMC-40x0 profiler. Note: The actual motor motion may not be complete
when the profile has been completed, however, the next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. XYZ or W axis
specifiers are required to select the axes for motion. When no axes are specified, this causes motion to begin on all

axes.

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the deceleration
(DC) and position (PR or PA) cannot be changed until motion is complete. Remember, motion is complete when the
profiler is finished, not when the actual motor is in position. The Stop command (ST) can be issued at any time to
decelerate the motor to a stop before it reaches its final position.

An incremental position movement (IP) may be specified during motion as long as the additional move is in the
same direction. Here, the user specifies the desired position increment, n. The new target is equal to the old
target plus the increment, n. Upon receiving the IP command, a revised profile will be generated for motion
towards the new end position. The IP command does not require a begin. Note: If the motor is not moving, the IP
command is equivalent to the PR and BG command combination.

Command Summary - Independent Axis

COMMAND DESCRIPTION

PR x,y,2,w Specifies relative distance

PA X,¥,2Z,W Specifies absolute position

SP x,y,2,wW Specifies slew speed

AC x,y,2,wW Specifies acceleration rate

DC x,y,2,W Specifies deceleration rate

BG XYZW Starts motion

ST XYZW Stops motion before end of move
IP x,y,2,w Changes position target

IT x,y,2,w Time constant for independent motion smoothing
AM XYZW Trippoint for profiler complete
MC XYZW Trippoint for “in position”

Chapter 6 Programming Motion = 74

DMC-40x0 User Manual

The lower case specifiers (x,y,z,w) represent position values for each axis.

The DMC-40x0 also allows use of single axis specifiers such as PRY=2000

Operand Summary - Independent Axis

OPERAND DESCRIPTION

_ACx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the speed for the axis specified by ‘x’

_PAx Returns current destination if ‘x” axis is moving, otherwise returns the current commanded
position if in a move.

_PRx Returns current incremental distance specified for the ‘x” axis

Example - Absolute Position Movement

PA 10000,20000 Specify absolute X,Y position
AC 1000000,1000000 Acceleration for X,Y

DC 1000000,1000000 Deceleration for X,Y

SP 50000,30000 Speeds for X,Y

BG XY Begin motion

Example - Multiple Move Sequence

Required Motion Profiles:

X-Axis 500 counts Position
20000 count/sec Speed
500000 counts/sec2 Acceleration

Y-Axis 1000 counts Position
10000 count/sec Speed
500000 counts/sec2 Acceleration

Z-Axis 100 counts Position
5000 counts/sec Speed

500000 counts/sec Acceleration

This example will specify a relative position movement on X, Y and Z axes. The movement on each axis will be
separated by 20 msec. Figure 6.1 shows the velocity profiles for the X,Y and Z axis.

#A Begin Program

PR 2000,500,100 Specify relative position movement of 2000, 500 and 100 counts for X,Y and Z axes.
Sp 20000,10000,5000 Specify speed of 20000, 10000, and 5000 counts / sec
AC 500000,500000,500000 Specify acceleration of 500000 counts / sec’ for all axes
DC 500000,500000,500000 Specify deceleration of 500000 counts / sec? for all axes
BG X Begin motion on the X axis

WT 20 Wait 20 msec

BG Y Begin motion on the Y axis

WT 20 Wait 20 msec

BG Z Begin motion on Z axis

EN End Program

DMC-40x0 User Manual Chapter 6 Programming Motion = 75

VELOCITY

(COUNTS/SEC)

[X axis velocity profile
20000 Y axis velocity profile
15000

Z axis velocity profile
10000
5000 L
TIME (ms)
/\ 1 1
0 20 40 60 80 100

Figure 6.1: Velocity Profiles of XYZ

Notes on Figure 6.1: The X and Y axis have a ‘trapezoidal’ velocity profile, while the Z axis has a ‘triangular’ velocity
profile. The X and Y axes accelerate to the specified speed, move at this constant speed, and then decelerate such
that the final position agrees with the command position, PR. The Z axis accelerates, but before the specified
speed is achieved, must begin deceleration such that the axis will stop at the commanded position. All 3 axes have
the same acceleration and deceleration rate, hence, the slope of the rising and falling edges of all 3 velocity profiles
are the same.

Independent Jogging

The jog mode of motion is very flexible because speed, direction and acceleration can be changed during motion.
The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each axis. The direction
of motion is specified by the sign of the JG parameters. When the begin command is given (BG), the motor
accelerates up to speed and continues to jog at that speed until a new speed or stop (ST) command is issued. If the
jog speed is changed during motion, the controller will make a accelerated (or decelerated) change to the new
speed.

An instant change to the motor position can be made with the use of the IP. command. Upon receiving this
command, the controller commands the motor to a position which is equal to the specified increment plus the
current position. This command is useful when trying to synchronize the position of two motors while they are
moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The DMC-40x0
converts the velocity profile into a position trajectory and a new position target is generated every sample period.
This method of control results in precise speed regulation with phase lock accuracy.

Command Summary - Jogging

COMMAND DESCRIPTION

AC x,¥,2,W Specifies acceleration rate

BG XYZW Begins motion

DC x,y,2,w Specifies deceleration rate

IP x,y,2,wW Increments position instantly

IT x,y,2,wW Time constant for independent motion smoothing
JG *x,vy,z,w Specifies jog speed and direction

ST XYZW Stops motion

Parameters can be set with individual axes specifiers such as JGY=2000 (set jog speed for Y axis to 2000).

Chapter 6 Programming Motion = 76 DMC-40x0 User Manual

Operand Summary - Independent Axis

OPERAND DESCRIPTION

_ACx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the jog speed for the axis specified by ‘x’

_Tvx Returns the actual velocity of the axis specified by ‘x’ (averaged over 0.25 sec)

Example - Jog in X only

Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at 25000

count/s.
#A
AC 20000,,20000 Specify X,Z acceleration of 20000 counts / sec
DC 20000,,20000 Specify X,Z deceleration of 20000 counts / sec
JG 50000, ,-25000 Specify jog speed and direction for X and Z axis
BG X Begin X motion
AS X Wait until X is at speed
BG Z Begin Z motion
EN

Example - Joystick Jogging

The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 Volt input the
speed must be 50000 counts/sec.

#J0OY Label

JGO Set in Jog Mode
BGX Begin motion

#B Label for loop

V1 =@AN[1] Read analog input
VEL=V1*50000/10 Compute speed
JG VEL Change JG speed
JP #B Loop

Position Tracking

The Galil controller may be placed in the position tracking mode to support changing the target of an absolute
position move on the fly. New targets may be given in the same direction or the opposite direction of the current
position target. The controller will then calculate a new trajectory based upon the new target and the acceleration,
deceleration, and speed parameters that have been set. The motion profile in this mode is trapezoidal. There is
not a set limit governing the rate at which the end point may be changed, however at the standard TM rate, the
controller updates the position information at the rate of 1msec. The controller generates a profiled point every
other sample, and linearly interpolates one sample between each profiled point. Some examples of applications
that may use this mode are satellite tracking, missile tracking, random pattern polishing of mirrors or lenses, or any
application that requires the ability to change the endpoint without completing the previous move.

The PA command is typically used to command an axis or multiple axes to a specific absolute position. For some
applications such as tracking an object, the controller must proceed towards a target and have the ability to change
the target during the move. In a tracking application, this could occur at any time during the move or at regularly
scheduled intervals. For example if a robot was designed to follow a moving object at a specified distance and the
path of the object wasn’t known the robot would be required to constantly monitor the motion of the object that it
was following. To remain within a specified distance it would also need to constantly update the position target it
is moving towards. Galil motion controllers support this type of motion with the position tracking mode. This
mode will allow scheduled or random updates to the current position target on the fly. Based on the new target
the controller will either continue in the direction it is heading, change the direction it is moving, or decelerate to a
stop.

DMC-40x0 User Manual Chapter 6 Programming Motion = 77

The position tracking mode shouldn’t be confused with the contour mode. The contour mode allows the user to
generate custom profiles by updating the reference position at a specific time rate. In this mode, the position can
be updated randomly or at a fixed time rate, but the velocity profile will always be trapezoidal with the parameters
specified by AC, DC, and SP. Updating the position target at a specific rate will not allow the user to create a
custom profile.

The following example will demonstrate the possible different motions that may be commanded by the controller
in the position tracking mode. In this example, there is a host program that will generate the absolute position
targets. The absolute target is determined based on the current information the host program has gathered on the
object that it is tracking. The position tracking mode does allow for all of the axes on the controller to be in this
mode, but for the sake of discussion, it is assumed that the robot is tracking only in the X dimension.

The controller must be placed in the position tracking mode to allow on the fly absolute position changes. This is
performed with the PT command. To place the X axis in this mode, the host would issue PT1 to the controller if
both X and Y axes were desired the command would be PT 1,1. The next step is to begin issuing PA command to
the controller. The BG command isn’t required in this mode, the SP, AC, and DC commands determine the shape of
the trapezoidal velocity profile that the controller will use.

Example - Motion 1:

The host program determines that the first target for the controller to move to is located at 5000 encoder counts.
The acceleration and deceleration should be set to 150,000 counts/sec2 and the velocity is set to 50,000
counts/sec. The command sequence to perform this is listed below.

#EX1

PT 1;' Place the X axis in Position tracking mode

AC 150000;" Set the X axis acceleration to 150000 counts/sec?2

DC 150000;" Set the X axis deceleration to 150000 counts/sec?2

SP 50000;" Set the X axis speed to 50000 counts/sec

PA 5000;"' Command the X axis to absolute position 5000 encoder counts
EN

The output from this code can be seen in Figure 6.2, a screen capture from the GalilTools scope.

Scope x|
Y tertical | Horizontal
j:t dfdt Source Scale (jdiv) OFfset (div)
7 WO | Reasdsarefv] socuntd] |5 R
‘f (m] v |sooo0 (2 2 =
[I [z g &
¥ Cnl vl oz e 2
B []|] [eazres B[&
=Y L] w||oaeerese |2 &
[a} vl [0zl s &
[jm] v nzzizEs 3] 4 &

t soms (5] |0

Tringer
Channel | Bl _RP{v | Edge |7] Level 2500 count/3

Mode |Repeat v, READY Stop

PR

Figure 6.2: Position vs Time (msec) - Motion 1

Example - Motion 2:

The previous step showed the plot if the motion continued all the way to 5000, however partway through the
motion, the object that was being tracked changed direction, so the host program determined that the actual
target position should be 2000 counts at that time. Figure 6.2 shows what the position profile would look like if the
move was allowed to complete to 5000 counts. The position was modified when the robot was at a position of
4200 counts (Figure 6.3). Note that the robot actually travels to a distance of almost 5000 counts before it turns
around. This is a function of the deceleration rate set by the DC command. When a direction change is

Chapter 6 Programming Motion = 78 DMC-40x0 User Manual

commanded, the controller decelerates at the rate specified by the DC command. The controller then ramps the
velocity in up to the value set with SP in the opposite direction traveling to the new specified absolute position.
Figure 6.3 the velocity profile is triangular because the controller doesn’t have sufficient time to reach the set
speed of 50000 counts/sec before it is commanded to change direction.

The below code is used to simulate this scenario:

#EX2
1;' Place the X axis in Position tracking mode

PT
AC
DC
SP
PA
MF
PA
EN

150000;
150000;
50000;"'
5000;"
4200

2000; "

Set the X axis acceleration to 150000 counts/sec?2

! Set the X axis deceleration to 150000 counts/sec?2

Set the X axis speed to 50000 counts/sec

Command the X axis to abs position 5000 encoder counts

Change end point position to position 2000

Scope

CON %NHp

vertical | Horizontal
djdt Source

W[_RPAaxis Aref
_RPA dixis A ref|

L m}

m[]

[m}

L m}

4 |mO
m[]

Trigger

Channel Bl _RPAv| Edgs |f |v| Level Dcounts [T

Mode Repeat | v

_RPA

v
v

v

v
v
v
v
v

scale (jdiv)
1000 courfas
10000 coL 3

z

+.42765
0.442765

0221383 &
0.221383 &

101,562 nf3s

READY

0.221383 & |0

Offset (div)
o
-2

B AR |8 R 7R &R |RE) |58 (AR

B

Figure 6.3: Position and Velocity vs Time (msec) for Motion 2

Example - Motion 3:

In this motion, the host program commands the controller to begin motion towards position 5000, changes the
target to -2000, and then changes it again to 8000. Figure 6.4 shows the plot of position vs. time and velocity vs.
time. Below is the code that is used to simulate this scenario:

#EX3
1;' Place the X axis in Position tracking mode
' Set the X axis acceleration to 150000 counts/sec2
' Set the X axis deceleration to 150000 counts/sec2

PT
AC
DC
SP
PA
WT
PA
WT
PA
EN

150000;
150000;
50000; "
5000; "
300
-2000;"
200
8000;"

Set the X axis speed to 50000 counts/sec

Command the X axis to abs position 5000 encoder counts

Change end point position to -2000

Change end point position to 8000

Figure 6.5 demonstrates the use of motion smoothing (IT) on the velocity profile in this mode. The jerk in the
system is also affected by the values set for AC and DC.

DMC-40x0 User Manual

Chapter 6 Programming Motion = 79

CAT SN

vertical | Horizantal

dide Source seale (fdiv) Offset (div)
W] _RPaks Aref x| 2000 cours

_RPé dods A ref| | 10000 cou$ -2
[Jm] ¥ [2
L]
n0

| (0221383
¥

m0] ~| D.442RES
v
)

442765
4 | m0O 0.221383
]

0.221383

RE) |<E) [<B) (R R 8 kB
RE) KB (8B R | (28 |RE) KR ©E

t 1s0ms

Trigger

Channel | Bl _RPév| Edge | |v| Level Ocounts (2

Wods [Repeat [v] ReaDy
n
Figure 6.4: Position and Velocity vs Time (msec) for Motion 3
Scope X,
EoN Yertical | _Horizontal
H i Source Scale {Jdv) Offset (dv)
/) B[] | RPaAs Areflv| 2000 cour/S] 0 &
;IRF _RPA Axis A ref w| 10000 coud] -2 =
[jm] vz <t &
& ml v [ozziass] o &
Z [jm] v| 442765 (S -1 <
=) m[] v| 0442765/8] -2 5
4 | m0O v| n221383(8] |3 <
m[] v| 02213835 4 =
E 150ms ($] |4 <
E—
Charnel | M _RP{v| Edge | |w| Level Ocounts (2
Mok Repest [v] RERDY
a

Figure 6.5: Position and Velocity vs Time (msec) for Motion 3 with IT 0.1

Note the controller treats the point where the velocity passes through zero as the end of one move, and the
beginning of another move. IT is allowed, however it will introduce some time delay.

Trippoints

Most trippoints are valid for use while in the position tracking mode. There are a few exceptions to this; the AM
and MC commands may not be used while in this mode. It is recommended that MF, MR, or AP be used, as they
involve motion in a specified direction, or the passing of a specific absolute position.

Command Summary - Position Tracking Mode

COMMAND

DESCRIPTION

AC n,n,n,n,n,n,n,n

Acceleration settings for the specified axes

AP n,n,n,n,n,n,n,n

Trippoint that holds up program execution until an absolute position has been reached

DC n,n,n,n,n,n,n,n

Deceleration settings for the specified axes

MF n,n,n,n,n,n,n,n

Trippoint to hold up program execution until n number of counts have passed in the
forward direction. Only one axis at a time may be specified.

MR n,n,n,n,n,n,n,n

Trippoint to hold up program execution until n number of counts have passed in the
reverse direction. Only one axis at a time may be specified.

PT n,n,n,n,n,n,n,n

Command used to enter and exit the Trajectory Modification Mode

PA n,n,n,n,n,n,n,n

Command Used to specify the absolute position target

SP n,n,n,n,n,n,n,n

Speed settings for the specified axes

Chapter 6 Programming Motion = 80

DMC-40x0 User Manual

Linear Interpolation Mode

The DMC-40x0 provides a linear interpolation mode for 2 or more axes. In linear interpolation mode, motion
between the axes is coordinated to maintain the prescribed vector speed, acceleration, and deceleration along the
specified path. The motion path is described in terms of incremental distances for each axis. An unlimited number
of incremental segments may be given in a continuous move sequence, making the linear interpolation mode ideal
for following a piece-wise linear path. There is no limit to the total move length.

The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM YZ selects
only the Y and Z axes for linear interpolation.

When using the linear interpolation mode, the LM command only needs to be specified once unless the axes for
linear interpolation change.

Specifying Linear Segments

The command LI x,y,z,w or Ll a,b,c,d,e,f,g,h specifies the incremental move distance for each axis. This means
motion is prescribed with respect to the current axis position. Up to 511 incremental move segments may be given
prior to the Begin Sequence (BGS) command. Once motion has begun, additional LI segments may be sent to the
controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the start of the
motion. To stop the motion, use the instructions STS or AB. The command, ST, causes a decelerated stop. The
command, AB, causes an instantaneous stop and aborts the program, and the command AB1 aborts the motion
only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This command tells the
controller to decelerate to a stop following the last LI command. If an LE command is not given, an Abort AB1 must
be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the DMC-40x0 sequence buffer to ensure
continuous motion. If the controller receives no additional LI segments and no LE command, the controller will
stop motion instantly at the last vector. There will be no controlled deceleration. LM? or _LM returns the available
spaces for LI segments that can be sent to the buffer. 511 returned means the buffer is empty and 511 LI segments
can be sent. A zero means the buffer is full and no additional segments can be sent. As long as the buffer is not
full, additional LI segments can be sent at PC bus speeds.

The instruction _CS returns the segment counter. As the segments are processed, _CS increases, starting at zero.
This function allows the host computer to determine which segment is being processed.

Additional Commands

The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and deceleration. The DMC-
40x0 computes the vector speed based on the axes specified in the LM mode. For example, LM XYZ designates
linear interpolation for the X,Y and Z axes. The vector speed for this example would be computed using the
equation:

VS2=XS2+YS2+ZS2, where XS, YS and ZS are the speed of the X,Y and Z axes.
The controller always uses the axis specifications from LM, not LI, to compute the speed.

IT is used to set the S-curve smoothing constant for coordinated moves. The command AV n is the ‘After Vector’
trippoint, which halts program execution until the vector distance of n has been reached.

DMC-40x0 User Manual Chapter 6 Programming Motion = 81

An Example of Linear Interpolation Motion:

#LMOVE label

DP 0,0 Define position of X and Y axes to be 0

LMXY Define linear mode between X and Y axes.

LI 5000,0 Specify first linear segment

LI 0,5000 Specify second linear segment

LE End linear segments

VS 4000 Specify vector speed

BGS Begin motion sequence

AV 4000 Set trippoint to wait until vector distance of 4000 is reached
VS 1000 Change vector speed

AV 5000 Set trippoint to wait until vector distance of 5000 is reached
VS 4000 Change vector speed

EN Program end

In this example, the XY system is required to perform a 90%% turn. In order to slow the speed around the corner,

we use the AV 4000 trippoint, which slows the speed to 1000 count/s. Once the motors reach the corner, the
speed is increased back to 4000 counts / s.

Specifying Vector Speed for Each Segment

The instruction VS has an immediate effect and, therefore, must be given at the required time. In some
applications, such as CNC, it is necessary to attach various speeds to different motion segments. This can be done
by two functions: <n and >m

For example:LI x,y,z,w < n >m

The first command, < n, is equivalent to commanding VSn at the start of the given segment and will cause an
acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note that the
function > m may start the deceleration within the given segment or during previous segments, as needed to meet
the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one function may
be masked by another. For example, if the function >100000 is followed by >5000, and the distance for
deceleration is not sufficient, the second condition will not be met. The controller will attempt to lower the speed
to 5000, but will reach that at a different point.

As an example, consider the following program.

#ALT Label for alternative program

DP 0,0 Define Position of X and Y axis to be 0

LMXY Define linear mode between X and Y axes.

LI 4000,0 <4000 >1000 Specify first linear segment with a vector speed of 4000 and end speed 1000
LI 1000,1000 < 4000 >1000 Specify second linear segment with a vector speed of 4000 and end speed 1000
LI 0,5000 < 4000 >1000 Specify third linear segment with a vector speed of 4000 and end speed 1000
LE End linear segments

BGS Begin motion sequence

EN Program end

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001. This
command takes effect immediately and causes VS to be scaled. VR also applies when the vector speed is specified
with the ‘<’ operator. This is a useful feature for feed rate override. VR does not ratio the accelerations. For
example, VR .5 results in the specification VS 2000 to be divided in half.

Chapter 6 Programming Motion = 82 DMC-40x0 User Manual

Command Summary - Linear Interpolation

COMMAND DESCRIPTION

LM xyzw Specify axes for linear interpolation

LM abcdefgh (same) controllers with 5 or more axes

LM? Returns number of available spaces for linear segments in DMC-40x0 sequence buffer.
Zero means buffer full. 511 means buffer empty.

LT %x,y,2,w < n Specify incremental distances relative to current position, and assign vector speed n.

LI a,b,c,d,e, f,9,h < n

VS n Specify vector speed

VA n Specify vector acceleration

VD n Specify vector deceleration

VR n Specify the vector speed ratio

BGS Begin Linear Sequence

CS Clear sequence

LE Linear End- Required at end of LI command sequence

LE? Returns the length of the vector (resets after 2147483647)

AMS Trippoint for After Sequence complete

AV n Trippoint for After Relative Vector distance, n

IT S curve smoothing constant for vector moves

Operand Summary - Linear Interpolation

OPERAND DESCRIPTION

AV Return distance traveled

_CS Segment counter - returns number of the segment in the sequence, starting at zero.

_LE Returns length of vector (resets after 2147483647)

_IM Returns number of available spaces for linear segments in DMC-40x0 sequence buffer.
Zero means buffer full. 511 means buffer empty.

_VPm Return the absolute coordinate of the last data point along the trajectory.
(m=X,Y,Z or W or A,B,C,D,E,F,G or H)

To illustrate the ability to interrogate the motion status, consider the first motion segment of our example,
#LMOVE, where the X axis moves toward the point X=5000. Suppose that when X=3000, the controller is
interrogated using the command ‘MG _AV’. The returned value will be 3000. The value of _CS, VPX and _VPY will
be zero.

Now suppose that the interrogation is repeated at the second segment when Y=2000. The value of _AV at this
point is 7000, _CS equals 1, _VPX=5000 and _VPY=0.

Example - Linear Move

Make a coordinated linear move in the ZW plane. Move to coordinates 40000,30000 counts at a vector speed of
100000 counts/sec and vector acceleration of 1000000 counts/sec2.

LM zwW Specify axes for linear interpolation
LI, ,40000,30000 Specify ZW distances

LE Specify end move

VS 100000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

BGS Begin sequence

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VZ and VW. The axis
speeds are determined by the controller from:

VS = AVZ? + VW?

DMC-40x0 User Manual Chapter 6 Programming Motion = 83

The result is shown in Figure 6.6: Linear Interpolation.

30000

27000

POSITION W

3000

0 4000 36000 40000
POSITION Z

FEEDRATE

0 0.1 05 06 TIVE (sec)

VELOCITY
Z-AXIS

TIME (sec)

VELOCITY
W-AXIS

Figure 6.6: Linear Interpolation

TIME (sec)

Example - Multiple Moves

This example makes a coordinated linear move in the XY plane. The Arrays VX and VY are used to store 750

incremental distances which are filled by the program #LOAD.

#LOAD

DM VX [750],VY [750]
COUNT=0

N=0

#1L0OOP

VX [COUNT]=N

VY [COUNT]=N

N=N+10
COUNT=COUNT+1

JP #LOOP, COUNT<750
#A

LM XY

COUNT=0

#LOOP2; JP#LOOP2, LM=0
JS#C, COUNT=500

LI VX[COUNT],VY[COUNT]
COUNT=COUNT+1

JP #LOOP2,COUNT<750
LE

AMS

MG “DONE”

EN

#C;BGS; EN

Load Program

Define Array

Initialize Counter

Initialize position increment
Loor

Fill Array VX

Fill Array VY

Increment position
Increment counter

Loop if array not full

Label

Specify linear mode for XY
Initialize array counter

If sequence buffer full, wait
Begin motion on 500" segment
Specify linear segment
Increment array counter
Repeat until array done
End Linear Move

After Move sequence done
Send Message

End program

Begin Motion Subroutine

Vector Mode: Linear and Circular Interpolation Motion

The DMC-40x0 allows a long 2-D path consisting of linear and arc segments to be prescribed. Motion along the
path is continuous at the prescribed vector speed even at transitions between linear and circular segments. The

Chapter 6 Programming Motion = 84

DMC-40x0 User Manual

DMC-40x0 performs all the complex computations of linear and circular interpolation, freeing the host PC from this
time intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Any pair of two axes may be selected for
coordinated motion consisting of linear and circular segments. In addition, a third axis can be controlled such that
it remains tangent to the motion of the selected pair of axes. Note that only one pair of axes can be specified for
coordinated motion at any given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p is the tangent axis (Note: the commas
which separate m,n and p are not necessary). For example, VM XW?Z selects the XW axes for coordinated motion
and the Z-axis as the tangent.

Specifying the Coordinate Plane

The DMC-40x0 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector mode. These
two sets are identified by the letters Sand T.

To specify vector commands the coordinate plane must first be identified. This is done by issuing the command
CAS to identify the S plane or CAT to identify the T plane. All vector commands will be applied to the active
coordinate system until changed with the CA command.

Specifying Vector Segments

The motion segments are described by two commands; VP for linear segments and CR for circular segments. Once
a set of linear segments and/or circular segments have been specified, the sequence is ended with the command
VE. This defines a sequence of commands for coordinated motion. Immediately prior to the execution of the first
coordinated movement, the controller defines the current position to be zero for all movements in a sequence.
Note: This ‘local’ definition of zero does not affect the absolute coordinate system or subsequent coordinated
motion sequences.

The command, VP x,y specifies the coordinates of the end points of the vector movement with respect to the
starting point. Non-sequential axis do not require comma delimitation. The command, CR r,q,d define a circular
arc with a radius r, starting angle of g, and a traversed angle d. The notation for q is that zero corresponds to the
positive horizontal direction, and for both q and d, the counter-clockwise (CCW) rotation is positive.

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with the command VE.
The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts, additional segments may
be added.

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which were stored in the
buffer prior to the start of the motion. To stop the motion, use the instructions STS or AB1. ST stops motion at the
specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This command requires
the controller to decelerate to a stop following the last motion requirement. If a VE command is not given, an
Abort (AB1) must be used to abort the coordinated motion sequence.

It is the responsibility of the user to keep enough motion segments in the DMC-40x0 sequence buffer to ensure
continuous motion. If the controller receives no additional motion segments and no VE command, the controller
will stop motion instantly at the last vector. There will be no controlled deceleration. LM? or _LM returns the
available spaces for motion segments that can be sent to the buffer. 511 returned means the buffer is empty and
511 segments can be sent. A zero means the buffer is full and no additional segments can be sent. As long as the
buffer is not full, additional segments can be sent at PC bus speeds.

The operand _CS can be used to determine the value of the segment counter.

DMC-40x0 User Manual Chapter 6 Programming Motion = 85

Additional commands
The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and deceleration.

IT is the s curve smoothing constant used with coordinated motion.

Specifying Vector Speed for Each Segment:

The vector speed may be specified by the immediate command VS. It can also be attached to a motion segment
with the instructions

VP x,y<n>m
CRr,0,6<n>m

The first command, <n, is equivalent to commanding VSn at the start of the given segment and will cause an
acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note that the
function > m may start the deceleration within the given segment or during previous segments, as needed to meet
the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one function may
be masked by another. For example, if the function >100000 is followed by >5000, and the distance for
deceleration is not sufficient, the second condition will not be met. The controller will attempt to lower the speed
to 5000, but will reach that at a different point.

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001. This
command takes effect immediately and causes VS scaled. VR also applies when the vector speed is specified with
the ‘<’ operator. This is a useful feature for feed rate override. VR does not ratio the accelerations. For example,
VR 0.5 results in the specification VS 2000 to be divided by two.

Compensating for Differences in Encoder Resolution:

By default, the DMC-40x0 uses a scale factor of 1:1 for the encoder resolution when used in vector mode. If this is
not the case, the command, ES can be used to scale the encoder counts. The ES command accepts two arguments
which represent the number of counts for the two encoders used for vector motion. The smaller ratio of the two
numbers will be multiplied by the higher resolution encoder. For more information, see ES command in the
Command Reference.

Trippoints:

The AV n command is the After Vector trippoint, which waits for the vector relative distance of n to occur before
executing the next command in a program.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the coordinated
motion path. To handle these applications, the DMC-40x0 allows one axis to be specified as the tangent axis. The
VM command provides parameter specifications for describing the coordinated axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such as X,Y,ZW p=N
turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define its offset
and scale factor via the TN m,n command. m defines the scale factor in counts/degree and n defines the tangent
position that equals zero degrees in the coordinated motion plane. The operand _TN can be used to return the
initial position of the tangent axis.

Chapter 6 Programming Motion = 86 DMC-40x0 User Manual

Exam

ple:

Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000 quad counts/rev encoder and has
been initialized after power-up to point the knife in the +Y direction. A 180° circular cut is desired, with a radius of
3000, center at the origin and a starting point at (3000,0). The motion is CCW, ending at (-3000,0). Note that the
0° position in the XY plane is in the +X direction. This corresponds to the position -500 in the Z-axis, and defines
the offset. The motion has two parts. First, X,Y and Z are driven to the starting point, and later, the cut is
performed. Assume that the knife is engaged with output bit 0.

#EXAMPLE

VM XYZ

TN 2000/360,-500
CR 3000,0,180

VE
CBO

PA 3000,0, TN
BG XYZ
AM XYZ

SBO
WT50
BGS
AMS
CBO
MG
EN

“ALL DONE”

Example program

XY coordinate with Z as tangent

2000/360 counts/degree, position -500 is O degrees in XY plane
3000 count radius, start at 0 and go to 180 CCW

End vector

Disengage knife

Move X and Y to starting position, move Z to initial tangent position
Start the move to get into position

When the move is complete

Engage knife

Wait 50 msec for the knife to engage

Do the circular cut

After the coordinated move is complete

Disengage knife

End program

Command Summary - Coordinated Motion Sequence

COMMAND DESCRIPTION

VM m,n Specifies the axes for the planar motion where m and n represent the planar axes and p
is the tangent axis.

VP m,n Return coordinate of last point, where m=X,Y,Z or W.

CR r,e,0<n>m | Specifies arc segment where r is the radius, 5 is the starting angle and a3 is the travel

angle. Positive direction is CCW.

VS s, t Specify vector speed or feed rate of sequence.

VA s,t Specify vector acceleration along the sequence.

VD s, t Specify vector deceleration along the sequence.

VR s,t Specify vector speed ratio

BGST Begin motion sequence, Sor T

CSST Clear sequence, Sor T

AV s,t Trippoint for After Relative Vector distance.

AMST Holds execution of next command until Motion Sequence is complete.

TN m,n Tangent scale and offset.

ES m,n Ellipse scale factor.

IT s,t S curve smoothing constant for coordinated moves

LM? Return number of available spaces for linear and circular segments in DMC-40x0
sequence buffer. Zero means buffer is full. 511 means buffer is empty.

CAS or CAT Specifies which coordinate system is to be active (S or T)

Operand Summary - Coordinated Motion Sequence

OPERAND DESCRIPTION
_VPM The absolute coordinate of the axes at the last intersection along the sequence.
_AV Distance traveled.
_LM Number of available spaces for linear and circular segments in DMC-40x0 sequence buffer.
Zero means buffer is full. 511 means buffer is empty.
_CS Segment counter - Number of the segment in the sequence, starting at zero.
VE Vector length of coordinated move sequence.

DMC-40x0 User Manual

Chapter 6 Programming Motion = 87

When AV is used as an operand, _AV returns the distance traveled along the sequence.

The operands _VPX and _VPY can be used to return the coordinates of the last point specified along the path.

Example:
Traverse the path shown in Figure 6.7. Feed rate is 20000 counts/sec. Plane of motion is XY
VM XY Specify motion plane
VS 20000 Specify vector speed
VA 1000000 Specify vector acceleration
vD 1000000 Specify vector deceleration
VP -4000,0 Segment AB
CR 1500,270,-180 Segment BC
VP 0,3000 Segment CD
CR 1500,90,-180 Segment DA
VE End of sequence
BGS Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we interrogate the
controller when the motion is halfway between the points A and B.

The value of _AV is 2000

The value of _CSis0

_VPX and _VPY contain the absolute coordinate of the point A

Suppose that the interrogation is repeated at a point, halfway between the points C and D.
The value of _AV is 4000+1500 v +2000=10,712

The value of _CSis 2

_VPX,_VPY contain the coordinates of the point C

C (-4000.3000) D (0.3000)
R = 1500
B (-4000,0) A(0,0)

Figure 6.7: The Required Path

Vector Mode - Mathematical Analysis

The terms of coordinated motion are best explained in terms of the vector motion. The vector velocity, Vs, which is
also known as the feed rate, is the vector sum of the velocities along the X and Y axes, Vx and Vy.

Vs = \JVx?+ Vy?

The vector distance is the integral of Vs, or the total distance traveled along the path. To illustrate this further,
suppose that a string was placed along the path in the X-Y plane. The length of that string represents the distance
traveled by the vector motion.

The vector velocity is specified independently of the path to allow continuous motion. The path is specified as a
collection of segments. For the purpose of specifying the path, define a special X-Y coordinate system whose origin
is the starting point of the sequence. Each linear segment is specified by the X-Y coordinate of the final point

Chapter 6 Programming Motion = 88 DMC-40x0 User Manual

expressed in units of resolution, and each circular arc is defined by the arc radius, the starting angle, and the
angular width of the arc. The zero angle corresponds to the positive direction of the X-axis and the CCW direction
of rotation is positive. Angles are expressed in degrees, and the resolution is 1/256th of a degree. For example,
the path shown in Figure A.8 is specified by the instructions:

VP 0,10000

CR 10000, 180, -90
VP 20000, 20000

Y
20000 C D
10000 | B
A X

10000 20000
Figure A.8: X-Y Motion Path

The first line describes the straight line vector segment between points A and B. The next segment is a circular arc,
which starts at an angle of 180° and traverses -90°. Finally, the third line describes the linear segment between
points C and D. Note that the total length of the motion consists of the segments:

A-B Linear 10000 units
, RjA 6|2
B-C Circular ————— =15708
360
C-D Linear 10000
Total 35708 counts

In general, the length of each linear segment is

Li-Xk*+ Yk*

Where Xk and Yk are the changes in X and Y positions along the linear segment. The length of the circular arc is
Li= RiA 0 «|21/360

The total travel distance is given by

n
D= Lk
L
The velocity profile may be specified independently in terms of the vector velocity and acceleration.

For example, the velocity profile corresponding to the path of Figure A.8 may be specified in terms of the vector
speed and acceleration.

VS 100000

VA 2000000

The resulting vector velocity is shown in Figure A.9.

DMC-40x0 User Manual Chapter 6 Programming Motion = 89

Velocity

10000

time (s)

T, 0.05 T, 0.357 T, 0.407

a s

Figure A.9: Vector Velocity Profile

The acceleration time, Ta, is given by
VS 100000 _ oo
V4 2000000

The slew time, Ts, is given by

35708
100000

T:E
A

T = —0°05=0307s

The total motion time, Tt, is given by:

T:= £+ Ta= 0.407s
Vs

The velocities along the X and Y axes are such that the direction of motion follows the specified path, yet the vector
velocity fits the vector speed and acceleration requirements.

For example, the velocities along the X and Y axes for the path shown in Figure A.8 are given in Figure A.10.

Figure A.10 shows the vector velocity. It also indicates the position point along the path starting at A and ending at
D. Between the points A and B, the motion is along the Y axis. Therefore,

Vy =Vs
and

Vx=0

Between the points B and C, the velocities vary gradually and finally, between the points C and D, the motion is in
the X direction.

(a)

(b)

(c)

time

Figure A.10: Vector Axes Velocities

Chapter 6 Programming Motion = 90 DMC-40x0 User Manual

Electronic Gearing

This mode allows up to 8 axes to be electronically geared to some master axes. The masters may rotate in both
directions and the geared axes will follow at the specified gear ratio. The gear ratio may be different for each axis
and changed during motion.

The command GAX yzw or GA ABCDEFGH specifies the master axes. GR x,y,z,w specifies the gear ratios for the
slaves where the ratio may be a number between +127.9999 with a fractional resolution of .0001. There are two
modes: standard gearing and gantry mode. The gantry mode (enabled with the command GM) allows the gearing
to stay enabled even if a limit is hit or an ST command is issued. GR 0,0,0,0 turns off gearing in both modes.

The command GM x,y,z,w select the axes to be controlled under the gantry mode. The parameter 1 enables gantry
mode, and O disables it.

GR causes the specified axes to be geared to the actual position of the master. The master axis is commanded with
motion commands such as PR, PA or JG.

When the master axis is driven by the controller in the jog mode or an independent motion mode, it is possible to
define the master as the command position of that axis, rather than the actual position. The designation of the
commanded position master is by the letter, C. For example, GACX indicates that the gearing is the commanded
position of X.

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of several axes
performed by GAS. For example, if the X and Y motor form a circular motion, the Z axis may move in proportion to
the vector move. Similarly, if X,Y and Z perform a linear interpolation move, W can be geared to the vector move.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in addition to
the gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be advanced an additional
distance with PR, or JG, commands, or VP, or LI.

Ramped Gearing

In some applications, especially when the master is traveling at high speeds, it is desirable to have the gear ratio
ramp gradually to minimize large changes in velocity on the slave axis when the gearing is engaged. For example if
the master axis is already traveling at 500,000 counts/sec and the slave will be geared at a ratio of 1:1 when the
gearing is engaged, the slave will instantly develop following error, and command maximum current to the motor.
This can be a large shock to the system. For many applications it is acceptable to slowly ramp the engagement of
gearing over a greater time frame. Galil allows the user to specify an interval of the master axis over which the
gearing will be engaged. For example, the same master X axis in this case travels at 500,000 counts/sec, and the
gear ratio is 1:1, but the gearing is slowly engaged over 30,000 counts of the master axis, greatly diminishing the
initial shock to the slave axis. Figure 6.12 below shows the velocity vs. time profile for instantaneous gearing.
Figure 6.14 shows the velocity vs. time profile for the gradual gearing engagement.

DMC-40x0 User Manual Chapter 6 Programming Motion = 91

vertical | Horizontal

dide Source scale (Jdiv) Offset (div)
B | reands aref[v [100000 e 4 2
_RPB Axis B ref{ v | 100000 cc

[Jul |2 2in

m0l

0.221383

1B R 2R &K

L m]

]
| [+.4z765

m0l v |n.442765
]
]

AT WN\Hp

<) <R

m[]
[l

0.221383

0.221383

) <8
¥ 4B

G 100jms

Triager

Charnel | M _RPEv| Edge |/ |v| Level | 1000 count (S

Mode Repeat [v. READY

djdk_RFA

Figure 6.11: Velocity counts/sec vs. Time (msec) Instantaneous Gearing Engagement

Scope X
o vertical | Horizontal
H djdt Source Scale (fdv) ffsst tdv)
/o B [reamdarelv] [0oecd] 1 2
~ _RPB s Bref v [100000 el [0 5
m[] v] 2z Hi &
& m0 v vz e o 5
Z‘ m0 v l4d27es B 1 &
=Y m0 vl osszmes (e 2
md ~| p22tas3fe] |3 &
m0 vl pz2tmsfe] 4 2

t tooms (2 |0 5

Trigger

Channel | 1 _RPEY| Edge [v Level |1000 count (3

Mode [hopet 'v| meay

djdt_RFA

Figure 6.12: Velocity (counts/sec) vs. Time (msec) Ramped Gearing

The slave axis for each figure is shown on the bottom portion of the figure; the master axis is shown on the top
portion. The shock to the slave axis will be significantly less in Figure 6.14 than in Figure 6.12. The ramped gearing
does have one consequence. There isn’t a true synchronization of the two axes, until the gearing ramp is complete.
The slave will lag behind the true ratio during the ramp period. If exact position synchronization is required from
the point gearing is initiated, then the position must be commanded in addition to the gearing. The controller
keeps track of this position phase lag with the _GP operand. The following example will demonstrate how the
command is used.

Example — Electronic Gearing Over a Specified Interval

Objective Run two geared motors at speeds of 1.132 and -.045 times the speed of an external master. Because the
master is traveling at high speeds, it is desirable for the speeds to change slowly.

Solution: Use a DMC-4030 controller where the Z-axis is the master and X and Y are the geared axes. We will
implement the gearing change over 6000 counts (3 revolutions) of the master axis.

MO Z Turn Z off, for external master

GA Z, Z Specify Z as the master axis for both X and Y.

GD 6000,6000 Specify ramped gearing over 6000 counts of the master axis.
GR 1.132,-.045 Specify gear ratios

Question: What is the effect of the ramped gearing?

Answer: Below, in the example titled Electronic Gearing, gearing would take effect immediately. From the start of
gearing if the master traveled 6000 counts, the slaves would travel 6792 counts and 270 counts.

Chapter 6 Programming Motion = 92 DMC-40x0 User Manual

Using the ramped gearing, the slave will engage gearing gradually. Since the gearing is engaged over the interval of
6000 counts of the master, the slave will only travel ~¥3396 counts and ~135 counts respectively. The difference
between these two values is stored in the _GPn operand. If exact position synchronization is required, the IP
command is used to adjust for the difference.

Command Summary - Electronic Gearing

COMMAND DESCRIPTION

GA n Specifies master axes for gearing where:

n=X)Y,Zor W or A,B,C,D,E,F,G,H for main encoder as master

n = CX,CY,CZ, CW or CA, CB,CC,CD,CE,CF,CG,CH for commanded position.

n = DX,DY,DZ or DW or DA, DB, DC, DD, DE, DF,DG,DH for auxiliary encoders

n =S or T for gearing to coordinated motion.

GD a,b,c,d,e,f,g,h Sets the distance the master will travel for the gearing change to take full effect.

GPn This operand keeps track of the difference between the theoretical distance traveled if
gearing changes took effect immediately, and the distance traveled since gearing
changes take effect over a specified interval.

GR a,b,c,d,e,f,9,h Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.
GM a,b,c,d,e,f,g,h X = 1 sets gantry mode, 0 disables gantry mode

MR x,y,2Z,wW Trippoint for reverse motion past specified value. Only one field may be used.
ME x,v,2,w Trippoint for forward motion past specified value. Only one field may be used.

Example - Simple Master Slave

Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the master. X,Z,W are geared
to master at ratios of 5,-.5 and 10 respectively.

GA Y,,Y,Y Specify master axes as Y
GR 5,,-.5,10 Set gear ratios

PR ,10000 Specify Y position

SP ,100000 Specify Y speed

BGY Begin motion

Example - Electronic Gearing

Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master. The
master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a DMC-4030 controller, where the Z-axis is the master and X and Y are the geared axes.

MO 7 Turn Z off, for external master
GA Z, Z Specify Z as the master axis for both X and Y.
GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by commanding:
GR 2 Specify gear ratio for X axis to be 2

Example - Gantry Mode

In applications where both the master and the follower are controlled by the DMC-40x0 controller, it may be
desired to synchronize the follower with the commanded position of the master, rather than the actual position.
This eliminates the coupling between the axes which may lead to oscillations.

For example, assume that a gantry is driven by two axes, XY, on both sides. This requires the gantry mode for
strong coupling between the motors. The X-axis is the master and the Y-axis is the follower. To synchronize Y with
the commanded position of X, use the instructions:

DMC-40x0 User Manual Chapter 6 Programming Motion = 93

GA, CX Specify the commanded position of X as master for Y.

GR, 1 Set gear ratio for Y as 1:1
GM, 1 Set gantry mode

PR 3000 Command X motion

BG X Start motion on X axis

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for example, that you
need to advance the slave 10 counts. Simply command

Ip ,10 Specify an incremental position movement of 10 on Y axis.

Under these conditions, this IP command is equivalent to:

PR, 10 Specify position relative movement of 10 on Y axis
BGY Begin motion on Y axis

Often the correction is quite large. Such requirements are common when synchronizing cutting knives or conveyor
belts.

Example - Synchronize two conveyor belts with trapezoidal velocity correction

GA, X Define X as the master axis for Y.
GR, 2 Set gear ratio 2:1 for Y

PR, 300 Specify correction distance

SP, 5000 Specify correction speed
AC,100000 Specify correction acceleration
DC, 100000 Specify correction deceleration
BGY Start correction

Electronic Cam

The electronic cam is a motion control mode which enables the periodic synchronization of several axes of motion.
Up to 7 axes can be slaved to one master axis. The master axis encoder must be input through a main encoder
port.

The electronic cam is a more general type of electronic gearing which allows a table-based relationship between
the axes. It allows synchronizing all the controller axes. For example, the DMC-4080 controllers may have one
master and up to seven slaves.

To illustrate the procedure of setting the cam mode, consider the cam relationship for the slave axis Y, when the
master is X. Such a graphic relationship is shown in Figure 6.13.
Step 1. Selecting the master axis
The first step in the electronic cam mode is to select the master axis. This is done with the instruction
EAp where p =XY,ZW,E,F,G,H
p is the selected master axis

For the given example, since the master is x, we specify EAX

Step 2. Specify the master cycle and the change in the slave axis (or axes).

In the electronic cam mode, the position of the master is always expressed modulo one cycle. In this example, the
position of x is always expressed in the range between 0 and 6000. Similarly, the slave position is also redefined
such that it starts at zero and ends at 1500. At the end of a cycle when the master is 6000 and the slave is 1500,
the positions of both x and y are redefined as zero. To specify the master cycle and the slave cycle change, we use
the instruction EM.

EM x,vy,2,w

Chapter 6 Programming Motion = 94 DMC-40x0 User Manual

where x,y,z,w specify the cycle of the master and the total change of the slaves over one cycle.

The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited to 2,147,483,647. If
the change is a negative number, the absolute value is specified. For the given example, the cycle of the master is
6000 counts and the change in the slave is 1500. Therefore, we use the instruction:

EM 6000,1500

Step 3. Specify the master interval and starting point.

Next we need to construct the ECAM table. The table is specified at uniform intervals of master positions. Up to
256 intervals are allowed. The size of the master interval and the starting point are specified by the instruction:

EP m,n
where m is the interval width in counts, and n is the starting point.

For the given example, we can specify the table by specifying the position at the master points of 0, 2000, 4000 and
6000. We can specify that by

EP 2000,0

Step 4. Specify the slave positions.
Next, we specify the slave positions with the instruction
ET[nl=x,vy,2,W
where n indicates the order of the point.

The value, n, starts at zero and may go up to 256. The parameters x,y,z,w indicate the corresponding slave position.
For this example, the table may be specified by

ET[0]=,0

ET[1]=,3000
ET[2]=,2250
ET[3]=,1500

This specifies the ECAM table.

Step 5. Enable the ECAM

To enable the ECAM mode, use the command

EB n

where n=1 enables ECAM mode and n=0 disables ECAM mode.

Step 6. Engage the slave motion
To engage the slave motion, use the instruction
EG x,vy,z,w
where x,y,z,w are the master positions at which the corresponding slaves must be engaged.
If the value of any parameter is outside the range of one cycle, the cam engages immediately. When the cam is
engaged, the slave position is redefined, modulo one cycle.
Step 7. Disengage the slave motion

To disengage the cam, use the command

EQ x,vy,2,w

DMC-40x0 User Manual Chapter 6 Programming Motion = 95

where x,y,z,w are the master positions at which the corresponding slave axes are disengaged.

3000 e v
2950 ..o T :

1500 |- feenene RN T .

0 2000 4000 6000 Master X

Figure 6.13: Electronic Cam Example

This disengages the slave axis at a specified master position. If the parameter is outside the master cycle, the
stopping is instantaneous.

To illustrate the complete process, consider the cam relationship described by
the equation:

Y=0.5 «X+100sin (0.18 xX)
where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The following program
includes the set-up.

The instruction EAX defines X as the master axis. The cycle of the master is
2000. Over that cycle, Y varies by 1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the master
points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X and X varies in increments of 20, the
phase varies by increments of 3.6%5. The program then computes the values of Y according to the equation and

assigns the values to the table with the instruction ET[N] = Y.

INSTRUCTION INTERPRETATION
#SETUP Label

EAX Select X as master

EM 2000,1000 Cam cycles

EP 20,0 Master position increments
N =0 Index

#LOOP Loop to construct table from equation
P = NF3.6 Note 3.6 =0.18 * 20

S = @SIN [P]*100 Define sine position

Y = N*10+S Define slave position

ET [N] =, Y Define table

N = N+1

JP #LOOP, N<=100 Repeat the process

EN

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the engagement and
disengagement points must be done at the center of the cycle: X =1000 and Y =500. This implies that Y must be

driven to that point to avoid a jump.

This is done with the program:

Chapter 6 Programming Motion = 96

DMC-40x0 User Manual

INSTRUCTION

#RUN
EB1

PA, 500
SP,5000
BGY

AM

ATl

EG, 1000
AL - 1
EQ,1000
EN

INTERPRETATION

Label

Enable cam
starting position

Y speed

Move Y motor
After Y moved
Wait for start signal
Engage slave

Wait for stop signal
Disengage slave
End

Command Summary - Electronic CAM

Command

Description

EA p

Specifies master axes for electronic cam where:

p =X)Y,Zor W or A,B,C,D,E,F,G,H for main encoder as master or M or N a for virtual axis

master

Enables the ECAM

ECAM counter - sets the index into the ECAM table

EG x,vy,2z,w

Engages ECAM

EM x,y,2z,wW

Specifies the change in position for each axis of the CAM cycle

E

P m,n

Defines CAM table entry size and offset

EQ m,n

Disengages ECAM at specified position

ET[n]

Defines the ECAM table entries

EW

Widen Segment (see Application Note #2444)

EY

Set ECAM cycle count

Operand Summary - Electronic CAM

Command

Description

EB

Contains State of ECAM

_EC

Contains current ECAM index

EGx

Contains ECAM status for each axis

EM

Contains size of cycle for each axis

EP

Contains value of the ECAM table interval

_EOx

Contains ECAM status for each axis

EY

Set ECAM cycle count

Example - Electronic CAM

The following example illustrates a cam program with a master axis, Z, and two slaves, X and Y.

DMC-40x0 User Manual

Chapter 6 Programming Motion = 97

INSTRUCTION

#A;V1=0

PA 0, 0;BGXY;AMXY
EA Z

EM 0,0,4000
EP400,0
ET[0]=0,0
ET[1]=40,20
ET[2]=120,60
ET[3]1=240,120
ET[4]=280,140
ET[5]=280,140
ET[6]=280,140
ET[7]=240,120
ET[8]=120,60
ET[9]=40,20
ET[10]=0,0

EB 1

JGZ=4000

EG 0,0

BGZ

#LOOP; JP#LOOP,V1=0
EQ2000,2000
MF,, 2000

ST Z

EB O

EN

INTERPRETATION

Label; Initialize variable

Go to position 0,0 on X and Y axes

Z axis as the Master for ECAM

Change for Z is 4000, zero for X, Y
ECAM interval is 400 counts with zero start
When master is at 0 position; 1* point.
2™ point in the ECAM table

3" point in the ECAM table

4™ point in the ECAM table

5" point in the ECAM table

6™ point in the ECAM table

7" point in the ECAM table

8" point in the ECAM table

9™ point in the ECAM table

10" point in the ECAM table

Starting point for next cycle

Enable ECAM mode

Set Z to jog at 4000

Engage both X and Y when Master =0
Begin jog on Z axis

Loop until the variable is set
Disengage X and Y when Master = 2000
Wait until the Master goes to 2000
Stop the Z axis motion

Exit the ECAM mode

End of the program

The above example shows how the ECAM program is structured and how the commands can be given to the
controller. Figure 6.14 shows the GalilTools scope capture of the ECAM profile. This shows how the motion will be
seen during the ECAM cycles. The first trace is for the A axis, the second trace shows the cycle on the B axis and

the third trace shows the cycle of the C axis.

CHT % H o

wertcal | Horzontal

didt soure

WO [Reands arerlv] [20cms

\ / \ / \ [1u]
Lla]
/ \ / \ [In]
Cla]
Lla]

Toager

scal ()

—\ O | reoadssrefv] 100 counfd
/ \ / \ \ w0 [Recaxs Creflv] [2000 coufs
¥ [o221385%
] [s.02765 &
v [osezrss
v [o221383%
¥ [oz21383%

sooms (&

offset (6v)
PR
1
4 &
0

1
B
ER-
o

0

Chemel | W R edoe 1 (] Level 2b00 count’s

Mode Repest V]

iy

READY.

Figure 6.14: E(.;AM cycle with Z axis as master

Chapter 6 Programming Motion = 98

DMC-40x0 User Manual

PVT Mode

The DMC-40x0 controllers now supports a mode of motion referred to as “PVT.” This mode allows arbitrary motion
profiles to be defined by position, velocity and time individually on all 8 axes. This motion is designed for systems
where the load must traverse a series of coordinates with no discontinuities in velocity. By specifying the target
position, velocity and time to achieve those parameters the user has control over the velocity profile. Taking
advantage of the built in buffering the user can create virtually any profile including those with infinite path
lengths.

Specifying PVT Segments

PVT segments must be entered one axis at a time using the PVn command. The PV command includes the target
distance to be moved and target velocity to be obtained over the specified timeframe. Positions are entered as
relative moves, similar to the standard PR command, in units of encoder counts and velocity is entered in
counts/second. The controller will interpolate the motion profile between subsequent PV commands using a 3rd
order polynomial equation. During a PV segment, jerk is held constant, and accelerations, velocities, and positions
will be calculated every other sample.

Motion will not begin until a BT command is issued, much like the standard BG command. This means that the user
can fill the PVT buffer for each axis prior to motion beginning. The BT command will ensure that all axes begin
motion simultaneously. It is not required for the “t” value for each axis to be the same, however if they are then
the axes will remain coordinated. Each axis has a 255 segment buffer. This buffer is a FIFO and the available space
can be queried with the operand _PVn. As the buffer empties the user can add more PVT segments.

Exiting PVT Mode

To exit PVT mode the user must send the segment command PVn=0,0,0. This will exit the mode once the segment
is reached in the buffer. To avoid an abrupt stop the user should slow the motion to a zero velocity prior to
executing this command. The controller will instantly command a zero velocity once a PVn=0,0,0 is executed. In
addition, a ST command will also exit PVT mode. Motion will come to a controlled stop using the DC value for
deceleration. The same controlled stop will occur if a limit switch is activated in the direction of motion. As a result,
the controller will be switched to a jog mode of motion.

Error Conditions and Stop Codes

If the buffer is allowed to empty while in PVT mode then the profiling will be aborted and the motor will come to a
controlled stop on that axis with a deceleration specified by the DC command. Also, PVT mode will be exited and
the stop code will be set to 32. During normal operation of PVT mode the stop code will be 30. If PVT mode is
exited normally (PVn=0,0,0), then the stop code will be set to 31.

Additional PVT Information

It is the users’ responsibility to enter PVT data that the system’s mechanics and power system can respond to in a
reasonable manner. Because this mode of motion is not constrained by the AC, DC or SP values, if a large velocity or
position is entered with a short period to achieve it, the acceleration can be very high, beyond the capabilities of
the system, resulting in excessive position error. The position and velocity at the end of the segment are
guaranteed to be accurate but it is important to remember that the required path to obtain the position and
velocity in the specified time may be different based on the PVT values. Mismatched values for PVT can result in
different interpolated profiles than expected but the final velocity and position will be accurate.

DMC-40x0 User Manual Chapter 6 Programming Motion = 99

The “t” value is entered in samples, which will depend on the TM setting. With the default TM of 1000, one sample
is 976us. This means that a “t” value of 1024 will yield one second of motion. The velocity value, “v” will always be
in units of counts per second, regardless of the TM setting. PVT mode is not available in the “-FAST” version of the
firmware. If this is required please consult Galil.

Command Summary - PVT

COMMAND DESCRIPTION
PVa = p,v,t Specifies the segment of axis 'a' for a incremental PVT segment of 'p' counts, an end speed
of 'v' counts/sec in a total time of 't' samples.
_PVa Contains the number of PV segments available in the PV buffer for a specified axes.
BT Begin PVT mode
_BTa Contains the number PV segments that have executed
PVT Examples

Parabolic Velocity Profile

In this example we will assume that the user wants to start from zero velocity, accelerate to a maximum velocity of
1000 counts/second in 1 second and then back down to 0 counts/second within an additional second. The velocity
profile would be described by the following equation and shown in Figure 6.15.

v(t) = - 1000(z - 1)*> + 1000

Desired Velocity Profile

1200

800

// \ \\\

400

Velocity(counts/second

200

Time(Seconds)

Figure 6.15: Parabolic Velocity Profile

To accomplish this we need to calculate the desired velocities and change in positions. In this example we will
assume a delta time of % of a second, which is 256 samples (1024 samples = 1 second with the default TM of 1000).

Velocity(counts/second) Position(counts)
v(t)= ~1000(- 1)* +1000 |)= [(-1000(¢ 1)° + 1000)dr
v(25)= 45 p(0 to .25) = 57
v(.5) = 750 p(.25 to .5) = 151
v(.75) = 937 5 p(.5t0.75) = 214
v(D = 1000 p(.75 to 1) = 245
v(1.25) = 9375 p(1to 1.25) =245
v(1.5)= o, p(1.25 to 1.5) = 214
v(1.75) = 4375 p(1.5to 1.75) = 151
v(2) =, p(1.75 to 2) =57

Chapter 6 Programming Motion = 100 DMC-40x0 User Manual

The DMC program is shown below and the results can be seen in Figure 6.16.

INSTRUCTION INTERPRETATION
#PVT Label
PVX 57,437,256

PVX
PVX
PVX
PVX
PVX
PVX
PVX
PVX
BTX
EN

151,750,256
214,937,256
245,1000,256
245,937,256
214,750,256
151,437,256

Incremental move of 57 counts in 256 samples with a final velocity of 437 counts/sec
Incremental move of 151 counts in 256 samples with a final velocity of 750 counts/sec
Incremental move of 214 counts in 256 samples with a final velocity of 937 counts/sec
Incremental move of 245 counts in 256 samples with a final velocity of 1000 counts/sec
Incremental move of 245 counts in 256 samples with a final velocity of 937 counts/sec
Incremental move of 214 counts in 256 samples with a final velocity of 750 counts/sec
Incremental move of 151 counts in 256 samples with a final velocity of 437 counts/sec

57,0,256 Incremental move of 57 counts in 256 samples with a final velocity of 0 counts/sec
0,0,0 Termination of PVT buffer
Begin PVT
Actual Velocity and Position vs Time
1200 / 1400
2 10 - 1200
§ o -
AN
] H L
K2 / / \ + 600 = —e— Position
2]
g o / / \ 1400 &
S = 200
°§§§§$§Q’§\V§v@§v@§r\9§
Time(Samples)

Figure 6.16: Actual Velocity and Position vs Time of Parabolic Velocity Profile

Multi-Axis Coordinated Move

Many applications require moving two or more axes in a coordinated move yet still require smooth motion at the
same time. These applications are ideal candidates for PVT mode.

In this exdMRIRWE Wi Axis 5

500 500 Required XY Points
1500 5000
2500 4000 6000
3300 4200 5000 _
7300 3300 -

2 4000 - Ad

8 3000 ¢

o

< 2000

1000
*
0 ‘ ‘ ‘ ‘ ‘ ‘ :
0 1000 2000 3000 4000 5000 6000 7000 8000

X Axis (Counts)

Figure 6.17: Required XY Points

DMC-40x0 User Manual

Chapter 6 Programming Motion = 101

The resultant DMC program is shown below. The position points are dictated by the application requirements and
the velocities and times were chosen to create smooth yet quick motion. For example, in the second segment the B
axis is slowed to 0 at the end of the move in anticipation of reversing direction during the next segment.

INSTRUCTION INTERPRETATION
#PVT Label
PVA = 500,2000,500 1% point in Figure 6.17 - A axis
PVB = 500,5000,500 1% point in Figure 6.17 - B axis
PVA = 1000,4000,1200 2" point in Figure 6.17 - A axis
PVB = 4500,0,1200 2" point in Figure 6.17 - B axis
PVA = 1000,4000,750 3" point in Figure 6.17 - A axis
PVB = -1000,1000,750 3" point in Figure 6.17 - B axis
BTAB Begin PVT mode for A and B axes
PVA = 800,10000,250 4™ point in Figure 6.17 - A axis
PVB = 200,1000,250 4™ point in Figure 6.17 - B axis
PVA = 4000,0,1000 5% point in Figure 6.17 - A axis
PVB = -900,0,1000 5% point in Figure 6.17 - B axis
pvA = 0,0,0 Termination of PVT buffer for A axis
PVB = 0,0,0 Termination of PVT buffer for B axis
EN

NOTE: The BT command is issued prior to filling the PVT buffers and additional PV commands are added

during motion for demonstration purposes only. The BT command could have been issued at the end
of all the PVT points in this example.

The resultant X vs. Y position graph is shown in Figure 6.18, with the specified PVT points enlarged.

6000

X vs Y Commanded Positions

5000

4000

3000

- N

2000

Y Axis (Counts)

1000

-1000

1000 2000 3000 4000 5000 6000 7000 8000

X Axis (Counts)

Figure 6.18: X vs Y Commanded Positions for Multi-Axis

Coordinated Move

Contour Mode

The DMC-40x0 also provides a contouring mode. This mode allows any arbitrary position curve to be prescribed for
1 to 8 axes. This is ideal for following computer generated paths such as parabolic, spherical or user-defined
profiles. The path is not limited to straight line and arc segments and the path length may be infinite.

Chapter 6 Programming Motion = 102

DMC-40x0 User Manual

Specifying Contour Segments

The Contour Mode is specified with the command, CM. For example, CMXZ specifies contouring on the X and Z
axes. Any axes that are not being used in the contouring mode may be operated in other modes.

A contour is described by position increments which are described with the command, CD x,y,z,w over a time
interval, DT n. The parameter, n, specifies the time interval. The time interval is defined as 2" sample period (1 ms
for TM1000), where n is a number between 1 and 8. The controller performs linear interpolation between the
specified increments, where one point is generated for each sample. If the time interval changes for each segment,
use CD x,y,z,w=n where n is the new DT value.

Consider, for example, the trajectory shown in Figure 6.19. The position X may be described by the points:

Point 1 X=0 at T=0ms
Point 2 X=48 at T=4ms
Point 3 X=288 at T=12ms
Point 4 X=336 at T=28ms

The same trajectory may be represented by the increments

Increment 1 DX=48 Time=4 DT=2
Increment 2 DX=240 Time=8 DT=3
Increment 3 DX=48 Time=16 DT=4

When the controller receives the command to generate a trajectory along these points, it interpolates linearly
between the points. The resulting interpolated points include the position 12 at 1 msec, position 24 at 2 msec, etc.

The programmed commands to specify the above example are:

#A

CMX Specifies X axis for contour mode

CD 48=2 Specifies first position increment and time interval, 2° ms

CD 240=3 Specifies second position increment and time interval, 2> ms
CD 48=4 Specifies the third position increment and time interval, 2* ms
CD 0=0 End Contour buffer

#Wait; JP#Wait, CM<>511 Wait until path is done

EN

POSITION
(COUNTS)
336 [e
288 [g
240 -
192 r
96 - : :
48 oo TIME (ms)
L 1 l 1 1 1 l J
0 4 8 12 16 20 24 28
SEGMENT 1 SEGMENT 2 SEGMENT 3 :

Figure 6.19: The Required Trajectory

Additional Information

_CM gives the amount of space available in the contour buffer (511 maximum). Zero parameters for DT followed
by zero parameters for CD will exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for new data. No
new motion commands are generated while waiting. If bad data is received, the controller responds with a ?.

Specifying a -1 for the DT or as the time interval in the CD command will pause the contour buffer.

DMC-40x0 User Manual Chapter 6 Programming Motion = 103

Issuing the CM command will clear the contour buffer.

Command Summary - Contour Mode

COMMAND DESCRIPTION

CM XYZW Specifies which axes for contouring mode. Any non-contouring axes may be operated in
other modes.

CM ABCDEFGH Contour axes for DMC-4080

CD x,¥,2,W Specifies position increment over time interval. Range is +32,000. CD 0,0,0.. .=0 ends the

contour buffer. This is much like the LE or VE commands.

CD a,b,c,d,e,f,g,h | Positionincrement data for DMC-4080

DT n Specifies time interval 2" sample periods (1 ms for TM1000) for position increment, where n
is an integer between 1 and 8. Zero ends contour mode. If n does not change, it does not
need to be specified with each CD.

_CM Amount of space left in contour buffer (511 maximum)

General Velocity Profiles

The Contour Mode is ideal for generating any arbitrary velocity profiles. The velocity profile can be specified as a
mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Generating an Array - An Example

Consider the velocity and position profiles shown in Figure 6.20. The objective is to rotate a motor a distance of
6000 counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk and the system vibration. If we describe
the position displacement in terms of A counts in B milliseconds, we can describe the motion in the following

manner:
W = ’;—(1- cos(2m /B))
X = AL - Asin(21/B)

Note: w is the angular velocity; X is the position; and T is the variable, time, in milliseconds.

In the given example, A=6000 and B=120, the position and velocity profiles are:
X = 50T - (6000/2m) sin (2nT/120)

Note that the velocity, w, in count/ms, is

w =50[1-cos 2nT/120]

Figure 6.20: Velocity Profile with Sinusoidal Acceleration

Chapter 6 Programming Motion = 104 DMC-40x0 User Manual

The DMC-40x0 can compute trigonometric functions. However, the argument must be expressed in degrees. Using
our example, the equation for X is written as:

X =50T - 955 sin 3T

A complete program to generate the contour movement in this example is given below. To generate an array, we
compute the position value at intervals of 8 ms. This is stored at the array POS. Then, the difference between the
positions is computed and is stored in the array DIF. Finally the motors are run in the contour mode.

Contour Mode Example

INSTRUCTION INTERPRETATION
#POINTS Program defines X points
DM POS[16] Allocate memory

DM DIF[15]

Cc=0 Set initial conditions, C is index
T=0 Tis time in ms

#A

V1=50*T

V2=3*T Argument in degrees
V3=-955*@SIN[V2]+V1 Compute position
V4=@INT[V3] Integer value of V3
POS[C]=V4 Store in array POS
T=T+8

C=C+1

JP #A,C<16

#B Program to find position differences
c=0

#C

D=C+1

DIF[C]=POS[D]-POS[C] Compute the difference and store
C=C+1

JP #C,C<15

#RUN Program to run motor
CMX Contour Mode

DT3 8 millisecond intervals
c=0

#E

CD DIF[C] Contour Distance is in DIF
C=C+1

JP #E,C<15

CD 0=0 End contour buffer
#Wait;JP#Wait, CM<>511 Wait until path is done
EN End the program

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory. Teaching can be accomplished using the
DMC-40x0 automatic array capture feature to capture position data. The captured data may then be played back in
the contour mode. The following array commands are used:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 4 for DMC-4040)

RD _TPX Specify data for capturing (such as _TPX or _TPZ)

RC n,m Specify capture time interval where n is 2" sample periods (1 ms for TM1000), m is number
of records to be captured

RC? or RC Returns a 1 if recording

DMC-40x0 User Manual Chapter 6 Programming Motion = 105

Record and Playback Example:

#RECORD Begin Program

DM XPOS[501] Dimension array with 501 elements
RA XPOS[] Specify automatic record

RD TPX Specify X position to be captured
MOX Turn X motor off

RC2 Begin recording; 4 msec interval (at TM1000)
#A; JP#A, RC=1 Continue until done recording
#COMPUTE Compute DX

DM DX[500] Dimension Array for DX

Cc=0 Initialize counter

#L Label

D=C+1

DELTA=XPOS [D] -XPOS [C] Compute the difference

DX[C]=DELTA Store difference in array
C=C+1 Increment index
JP #L,C<500 Repeat until done

#PLAYBCK Begin Playback

CMX Specify contour mode
DT2 Specify time increment
I=0 Initialize array counter
#B Loop counter

CD DX[I]; I=I+1
JP #B,I<500

Specify contour data I=I1+1 Increment array counter
Loop until done

CD 0=0 End countour buffer
#Wait; JP#Wait, CM<>511 Wait until path is done
EN End program

For additional information about automatic array capture, see .Chapter 7, Arrays.

Virtual Axis

The DMC-40x0 controller has two additional virtual axes designated as the M and N axes. These axes have no
encoder and no DAC. However, they can be commanded by the commands:

AC, DC, G, SP, PR, PA, BG, IT, GA, VM, VP, CR, ST, DP, RP
The main use of the virtual axes is to serve as a virtual master in ECAM modes, and to perform an unnecessary part
of a vector mode. These applications are illustrated by the following examples.
ECAM Master Example

Suppose that the motion of the XY axes is constrained along a path that can be described by an electronic cam
table. Further assume that the ecam master is not an external encoder but has to be a controlled variable.

This can be achieved by defining the N axis as the master with the command EAN and setting the modulo of the
master with a command such as EMN=4000. Next, the table is constructed. To move the constrained axes, simply
command the N axis in the jog mode or with the PR and PA commands.

For example,

PAN = 2000
BGN

will cause the XY axes to move to the corresponding points on the motion cycle.

Sinusoidal Motion Example

The x axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and a frequency of 20
Hz.

Chapter 6 Programming Motion = 106 DMC-40x0 User Manual

This can be performed by commanding the X and N axes to perform circular motion. Note that the value of VS
must be

VS=2n *R *F
where R is the radius, or amplitude and F is the frequency in Hz.

Set VA and VD to maximum values for the fastest acceleration.

INSTRUCTION INTERPRETATION
VMXN Select Axes

VA 68000000 Maximum Acceleration
VD 68000000 Maximum Deceleration
VS 125664 VS for 20 Hz

CR 1000, -90, 3600 Ten Cycles

VE

BGS

Stepper Motor Operation

When configured for stepper motor operation, several commands are interpreted differently than from servo
mode. The following describes operation with stepper motors.

Specifying Stepper Motor Operation
Stepper motor operation is specified by the command MT. The argument for MT is as follows:

2 specifies a stepper motor with active low step output pulses
-2 specifies a stepper motor with active high step output pulses
2.5 specifies a stepper motor with active low step output pulses and reversed direction
-2.5 specifies a stepper motor with active high step output pulse and reversed direction

Stepper Motor Smoothing
The command, KS, provides stepper motor smoothing. The effect of the smoothing can be thought of as a simple
Resistor-Capacitor (single pole) filter. The filter occurs after the motion profiler and has the effect of smoothing out
the spacing of pulses for a more smooth operation of the stepper motor. Use of KS is most applicable when
operating in full step or half step operation. KS will cause the step pulses to be delayed in accordance with the time
constant specified.

When operating with stepper motors, you will always have some amount of stepper motor smoothing, KS. Since
this filtering effect occurs after the profiler, the profiler may be ready for additional moves before all of the step
pulses have gone through the filter. It is important to consider this effect since steps may be lost if the controller is
commanded to generate an additional move before the previous move has been completed. See the discussion
below, Monitoring Generated Pulses vs. Commanded Pulses.

The general motion smoothing command, IT, can also be used. The purpose of the command, IT, is to smooth out
the motion profile and decrease ‘jerk’ due to acceleration.

Monitoring Generated Pulses vs. Commanded Pulses

For proper controller operation, it is necessary to make sure that the controller has completed generating all step
pulses before making additional moves. This is most particularly important if you are moving back and forth. For
example, when operating with servo motors, the trippoint AM (After Motion) is used to determine when the
motion profiler is complete and is prepared to execute a new motion command. However when operating in
stepper mode, the controller may still be generating step pulses when the motion profiler is complete. This is
caused by the stepper motor smoothing filter, KS. To understand this, consider the steps the controller executes to
generate step pulses:

DMC-40x0 User Manual Chapter 6 Programming Motion = 107

First, the controller generates a motion profile in accordance with the motion commands.

Second, the profiler generates pulses as prescribed by the motion profile. The pulses that are generated by the
motion profiler can be monitored by the command, RP (Reference Position). RP gives the absolute value of the
position as determined by the motion profiler. The command, DP, can be used to set the value of the reference
position. For example, DP O, defines the reference position of the X axis to be zero.

Third, the output of the motion profiler is filtered by the stepper smoothing filter. This filter adds a delay in the
output of the stepper motor pulses. The amount of delay depends on the parameter which is specified by the
command, KS. As mentioned earlier, there will always be some amount of stepper motor smoothing.

Fourth, the output of the stepper smoothing filter is buffered and is available for input to the stepper motor driver.
The pulses which are generated by the smoothing filter can be monitored by the command, TD (Tell Dual). TD gives
the absolute value of the position as determined by actual output of the buffer. The command, DP sets the value
of the step count register as well as the value of the reference position. For example, DP 0, defines the reference
position of the X axis to be zero.

Stepper Smoothing Filter Output Buffer Output

Motion Profiler
(Adds a Delay) — (To Stepper Driver)

Reference Position (RP) ‘ Step Count Register (TD) ‘

Motion Complete Trippoint

When used in stepper mode, the MC command will hold up execution of the proceeding commands until the
controller has generated the same number of steps out of the step count register as specified in the commanded
position. The MC trippoint (Motion Complete) is generally more useful than AM trippoint (After Motion) since the
step pulses can be delayed from the commanded position due to stepper motor smoothing.

Using an Encoder with Stepper Motors

An encoder may be used on a stepper motor to check the actual motor position with the commanded position. If
an encoder is used, it must be connected to the main encoder input. Note: The auxiliary encoder is not available
while operating with stepper motors. The position of the encoder can be interrogated by using the command, TP.
The position value can be defined by using the command, DE.

Note: Closed loop operation with a stepper motor is not possible.

Command Summary - Stepper Motor Operation

COMMAND DESCRIPTION

DE Define Encoder Position (When using an encoder)

DP Define Reference Position and Step Count Register

IT Motion Profile Smoothing - Independent Time Constant
KS Stepper Motor Smoothing

MT Motor Type (2,-2,2.5 or -2.5 for stepper motors)

RP Report Commanded Position

TD Report number of step pulses generated by controller
TP Tell Position of Encoder

Chapter 6 Programming Motion = 108 DMC-40x0 User Manual

Operand Summary - Stepper Motor Operation

OPERAND DESCRIPTION

_DEx Contains the value of the step count register for the ‘x’ axis

_DPx Contains the value of the main encoder for the ‘x’ axis

_ITx Contains the value of the Independent Time constant for the ‘x’ axis

_KSx Contains the value of the Stepper Motor Smoothing Constant for the ‘x’ axis
_MTx Contains the motor type value for the ‘x’ axis

_RPx Contains the commanded position generated by the profiler for the ‘x’ axis
_TDx Contains the value of the step count register for the ‘x’ axis

_TPx Contains the value of the main encoder for the ‘x” axis

Stepper Position Maintenance Mode (SPM)

The Galil controller can be set into the Stepper Position Maintenance (SPM) mode to handle the event of stepper
motor position error. The mode looks at position feedback from the main encoder and compares it to the
commanded step pulses. The position information is used to determine if there is any significant difference
between the commanded and the actual motor positions. If such error is detected, it is updated into a command
value for operator use. In addition, the SPM mode can be used as a method to correct for friction at the end of a
microstepping move. This capability provides closed-loop control at the application program level. SPM mode can
be used with Galil and non-Galil step drives.

SPM mode is configured, executed, and managed with seven commands. This mode also utilizes the #POSERR
automatic subroutine allowing for automatic user-defined handling of an error event.

Internal Controller Commands (user can query):

Qs Error Magnitude (pulses)

User Configurable Commands (user can query & change):
OE Profiler Off-On Error

YA Step Drive Resolution (pulses / full motor step)

YB Step Motor Resolution (full motor steps / revolution)
YC Encoder Resolution (counts / revolution)

YR Error Correction (pulses)

YS Stepper Position Maintenance enable, status

A pulse is defined by the resolution of the step drive being used. Therefore, one pulse could be a full step, a half
step or a microstep.

When a Galil controller is configured for step motor operation, the step pulse output by the controller is internally
fed back to the auxiliary encoder register. For SPM the feedback encoder on the stepper will connect to the main
encoder port. Enabling the SPM mode on a controller with YS=1 executes an internal monitoring of the auxiliary
and main encoder registers for that axis or axes. Position error is then tracked in step pulses between these two
registers (QS command).

TPx YAx YB

S=TD-
Q YC

Where TD is the auxiliary encoder register(step pulses) and TP is the main encoder register(feedback encoder).
Additionally, YA defines the step drive resolution where YA =1 for full stepping or YA = 2 for half stepping. The full
range of YA is up to YA = 9999 for microstepping drives.

DMC-40x0 User Manual Chapter 6 Programming Motion = 109

Error Limit

The value of QS is internally monitored to determine if it exceeds a preset limit of three full motor steps. Once the

value of QS exceeds this limit, the controller then performs the following actions:

1. The motion is maintained or is stopped, depending on the setting of the OE command. If OE=0 the axis
stays in motion, if OE=1 the axis is stopped.

2. YSis set to 2, which causes the automatic subroutine labeled #POSERR to be executed.

Correction

A correction move can be commanded by assigning the value of QS to the YR correction move command. The
correction move is issued only after the axis has been stopped. After an error correction move has completed and
QS is less than three full motor steps, the YS error status bit is automatically reset back to 1; indicating a cleared

error.

Example: SPM Mode Setup

The following code demonstrates what is necessary to set up SPM mode for a full step drive, a half step drive, and a
1/64th microstepping drive for an axis with a 1.8° step motor and 4000 count/rev encoder. Note the necessary
difference is with the YA command.

Full-Stepping Drive, X axis:

#SETUP
OEl;
KS16;
MT-2;
YAL;
YB200;
YC4000;
SHX;
WT50;
YS1;

Set the profiler to stop axis upon error

Set step smoothing

Motor type set to stepper

Step resolution of the full-step drive
Motor resolution (full steps per revolution)
Encoder resolution (counts per revolution)
Enable axis

Allow slight settle time

Enable SPM mode

Half-Stepping Drive, X axis:

#SETUP
OE1l;
KS16;
MT-2;
YAZ;
YB200;
YC4000;
SHX;
WT50;
YS1;

Set the profiler to stop axis upon error

Set step smoothing

Motor type set to stepper

Step resolution of the half-step drive
Motor resolution (full steps per revolution)
Encoder resolution (counts per revolution)
Enable axis

Allow slight settle time

Enable SPM mode

1/64™ Step Microstepping Drive, X axis:

#SETUP
OE1l;
KS16;
MT-2;
YAG4;
YB200;
YC4000;
SHX;
WT50;
YSsS1;

Set the profiler to stop axis upon error

Set step smoothing

Motor type set to stepper

Step resolution of the microstepping drive
Motor resolution (full steps per revolution)
Encoder resolution (counts per revolution)
Enable axis

Allow slight settle time

Enable SPM mode

Chapter 6 Programming Motion = 110

DMC-40x0 User Manual

Example: Error Correction

The following code demonstrates what is necessary to set up SPM mode for the X axis, detect error, stop the motor,
correct the error, and return to the main code. The drive is a full step drive, with a 1.8° step motor and 4000

count/rev encoder.

#setup

OF 1;°

KS 16;"

MT -2,-2,-2,-2;"
YA 2;"

YB 200;"

YC 4000;"

SH A;'

WT 100;'

#motion; "'
SP 512;"
PR 1000;"
BG A;'"
EN; '

REM When error occurs,

Set the profiler to stop axis upon error

Set step smoothing

Motor type set to stepper

Step resolution of the drive

Motor resolution (full steps per revolution)
Encoder resolution (counts per revolution)
Enable axis

Allow slight settle time

Perform motion

Set the speed

Prepare mode of motion
Begin motion

End of program subroutine

REM #POSERR, query the status YS and the error QS,
REM and return to the main code.

#POSERR; '

WT 100;"'
spsave=_SPA;'

JP #return, YSA<>2;'
SP64;

MG "ERROR= ", QSA
YRA=_ QSA;'

MC A;

Automatic subroutine is called when _YS=2
Wait helps user see the correction

Save current speed setting

Return to thread zero if invalid error

Set slow speed setting for correction

Else, error is valid, use QS for correction
Wait for motion to complete

MG "CORRECTED, ERROR NOW= ", QSX

WT 100;"

#return
SPA=spsave; "'
RE 0;'

Wait helps user see the correction

Return the speed to previous setting
Return from #POSERR

the axis will stop due to OEl. 1In

correct,

DMC-40x0 User Manual

Chapter 6 Programming Motion = 111

Example: Friction Correction

The following example illustrates how the SPM mode can be useful in correcting for X axis friction after each move
when conducting a reciprocating motion. The drive is a 1/64th microstepping drive with a 1.8° step motor and

4000 count/rev encoder.

#SETUP;

KS16;
MT-2,-2,-2,-2;
YAG4;

YB200;

YC4000;

SHX;

WT50;

YS1;

#MOTION;
SP16384;
PR10000;
BGX;

MCX
JS#CORRECT;
#MOTION2
SP16384;
PR-10000;
BGX;

MCX
JS#CORRECT;
JP#MOTION
#CORRECT;
spx=_SPX
#LOOP;
SP2048;
WT100;
JP#END, @ABS[QSX]<10;
YRX=_ QSX;
MCX

WT100;
JP#LOOP;
#END;
SPX=spx

EN

Set the profiler to continue upon error

Set step smoothing

Motor type set to stepper

Step resolution of the microstepping drive
Motor resolution (full steps per revolution)
Encoder resolution (counts per revolution)
Enable axis

Allow slight settle time

Enable SPM mode

Perform motion

Set the speed

Prepare mode of motion
Begin motion

Move to correction

Set the speed
Prepare mode of motion
Begin motion

Move to correction
Correction code

Save speed value

Set a new slow correction speed

Stabilize

End correction if error is within defined tolerance
Correction move

Stabilize
Keep correcting until error is within tolerance
End #CORRECT subroutine, returning to code

Dual Loop (Auxiliary Encoder)

The DMC-40x0 provides an interface for a second encoder for each axis except for axes configured for stepper
motor operation and axis used in circular compare. When used, the second encoder is typically mounted on the
motor or the load, but may be mounted in any position. The most common use for the second encoder is backlash

compensation, described below.

The second encoder may be a standard quadrature type, or it may provide pulse and direction. The controller also
offers the provision for inverting the direction of the encoder rotation. The main and the auxiliary encoders are
configured with the CE command. The command form is CE x,y,z,w (or a,b,c,d,e,f,g,h for controllers with more than
4 axes) where the parameters x,y,z,w each equal the sum of two integers m and n. m configures the main encoder

and n configures the auxiliary encoder.

Chapter 6 Programming Motion = 112

DMC-40x0 User Manual

Using the CE Command

m= Main Encoder n= Second Encoder

0 Normal quadrature 0 Normal quadrature

1 Pulse & direction 4 Pulse & direction

2 Reverse quadrature 8 Reversed quadrature

3 Reverse pulse & direction 12 Reversed pulse & direction

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of pulse and
direction, n=4, the total is 6, and the command for the X axis is:

CE®6

Additional Commands for the Auxiliary Encoder
The command, DE x,y,z,w, can be used to define the position of the auxiliary encoders. For example,
DE 0,500,-30,300

sets their initial values. The positions of the auxiliary encoders may be interrogated with the command, DE?. For
example:

DE?,?

returns the value of the X and Z auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the instructions
V1= DEX

The command, TD XYZW, returns the current position of the auxiliary encoder.

The command, DV 1,1,1,1, configures the auxiliary encoder to be used for backlash compensation.

Backlash Compensation

There are two methods for backlash compensation using the auxiliary encoders:
1. Continuous dual loop
2. Sampled dual loop

To illustrate the problem, consider a situation in which the coupling between the motor and the load has a
backlash. To compensate for the backlash, position encoders are mounted on both the motor and the load.

The continuous dual loop combines the two feedback signals to achieve stability. This method requires careful
system tuning, and depends on the magnitude of the backlash. However, once successful, this method
compensates for the backlash continuously.

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a
correction. This method is independent of the size of the backlash. However, it is effective only in point-to-point
motion systems which require position accuracy only at the endpoint.

Continuous Dual Loop - Example

Connect the load encoder to the main encoder port and connect the motor encoder to the dual encoder port. The
dual loop method splits the filter function between the two encoders. It applies the KP (proportional) and KI
(integral) terms to the position error, based on the load encoder, and applies the KD (derivative) term to the motor
encoder. This method results in a stable system.

The dual loop method is activated with the instruction DV (Dual Velocity), where
DV 1,1,1,1

DMC-40x0 User Manual Chapter 6 Programming Motion = 113

activates the dual loop for the four axes and
DV 0,000

disables the dual loop.

Note: that the dual loop compensation depends on the backlash magnitude, and in extreme cases will not stabilize
the loop. The proposed compensation procedure is to start with KP=0, KI=0 and to maximize the value of KD under
the condition DV1. Once KD is found, increase KP gradually to a maximum value, and finally, increase KI, if
necessary.

Sampled Dual Loop - Example

In this example, we consider a linear slide which is run by a rotary motor via a lead screw. Since the lead screw has
a backlash, it is necessary to use a linear encoder to monitor the position of the slide. For stability reasons, it is
best to use a rotary encoder on the motor.

Connect the rotary encoder to the X-axis and connect the linear encoder to the auxiliary encoder of X. Assume that
the required motion distance is one inch, and that this corresponds to 40,000 counts of the rotary encoder and
10,000 counts of the linear encoder.

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts. Once the motion
is complete, the controller monitors the position of the linear encoder and performs position corrections.

This is done by the following program.

INSTRUCTION INTERPRETATION
#DUALOOP Label

CE O Configure encoder

DEO Set initial value

PR 40000 Main move

BGX Start motion

#correct Correction loop

AMX Wait for motion completion
V1=10000-_DEX Find linear encoder error
V2=-_TEX/4+V1 Compensate for motor error
JP#END, @ABS [V2]<2 Exit if error is small

PR V2*4 Correction move

BGX Start correction
JP#correct Repeat

#END

EN

Motion Smoothing

The DMC-40x0 controller allows the smoothing of the velocity profile to reduce the mechanical vibration of the
system.

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum value. The
discontinuous acceleration results in jerk which causes vibration. The smoothing of the acceleration profile leads
to a continuous acceleration profile and reduces the mechanical shock and vibration.

Using the IT Command:

When operating with servo motors, motion smoothing can be accomplished with the IT command.

@ This command filters the acceleration and deceleration functions to produce a smooth velocity
profile. The resulting velocity profile, has continuous acceleration and results in reduced mechanical
vibrations.

The smoothing function is specified by the following commands:

Chapter 6 Programming Motion = 114 DMC-40x0 User Manual

IT x,y,2,w Independent time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and to smooth vector moves of
the type VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 1 and determine the degree of filtering. The
maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller values of the smoothing
parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Figure 6.21 shows the trapezoidal velocity profile and
the modified acceleration and velocity.

Note that the smoothing process results in longer motion time.

Example - Smoothing

PR 20000 Position

AC 100000 Acceleration

DC 100000 Deceleration

SP 5000 Speed

IT .5 Filter for smoothing

BG X Begin
ACCELERATION

VELOCITY

No smoothing

ACCELERATION

VELOCITY

N

After profile
smoothing

Figure 6.21: Trapezoidal velocity and smooth velocity profiles

Using the KS Command (Step Motor Smoothing):

When operating with step motors, motion smoothing can be accomplished with the command, KS.
The KS command smoothes the frequency of step motor pulses. Similar to the command IT, this
produces a smooth velocity profile.
The step motor smoothing is specified by the following command:

KS x,y,z,w where x,y,z,w is an integer from 0.25 to 64 and represents the amount of smoothing

The smoothing parameters, x,y,z,w and n are numbers between 0.25 and 64 and determine the degree of filtering.
The minimum value of 0.25 implies the least filtering, resulting in trapezoidal velocity profiles. Larger values of the
smoothing parameters imply heavier filtering and smoother moves.

Note that KS is valid only for step motors.

DMC-40x0 User Manual Chapter 6 Programming Motion = 115

Homing

The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical reference. This
reference is connected to the Home input line. The HM command initializes the motor to the encoder index pulse
in addition to the Home input. The configure command (CN) is used to define the polarity of the home input.

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is connected
to the Homing Input. When the Find Edge command and Begin is used, the motor will accelerate up to the slew
speed and slew until a transition is detected on the Homing line. The motor will then decelerate to a stop. A high
deceleration value must be input before the find edge command is issued for the motor to decelerate rapidly after
sensing the home switch. The Home (HM) command can be used to position the motor on the index pulse after
the home switch is detected. This allows for finer positioning on initialization. The HM command and BG
command causes the following sequence of events to occur.

Stage 1:

Upon begin, the motor accelerates to the slew speed specified by the JG or SP commands. The direction of its
motion is determined by the state of the homing input. If _HMX reads 1 initially, the motor will go in the reverse
direction first (direction of decreasing encoder counts). If _HMX reads 0 initially, the motor will go in the forward
direction first. CN is the command used to define the polarity of the home input. With CN,-1 (the default value) a
normally open switch will make _HMX read 1 initially, and a normally closed switch will make _HMX read zero.
Furthermore, with CN,1 a normally open switch will make _HMX read 0 initially, and a normally closed switch will
make HMX read 1. Therefore, the CN command will need to be configured properly to ensure the correct
direction of motion in the home sequence.

Upon detecting the home switch changing state, the motor begins decelerating to a stop.

Note: The direction of motion for the FE command also follows these rules for the state of the home input.

Stage 2:

The motor then traverses at HV counts/sec in the opposite direction of Stage 1 until the home switch toggles again.
If Stage 3 is in the opposite direction of Stage 2, the motor will stop immediately at this point and change direction.
If Stage 2 is in the same direction as Stage 3, the motor will never stop, but will smoothly continue into Stage 3.

Stage 3:

The motor traverses forward at HV counts/sec until the encoder index pulse is detected. The motor then
decelerates to a stop and goes back to the index.

The DMC-40x0 defines the home position as the position at which the index was detected and sets the encoder
reading at this point to zero.

The 4 different motion possibilities for the home sequence are shown in the following table.

Direction of Motion
Switch Type CN Setting Initial _HMX state Stage 1 Stage 2 Stage 3
Normally Open CN,-1 1 Reverse Forward Forward
Normally Open CN,1 0 Forward Reverse Forward
Normally Closed CN,-1 0 Forward Reverse Forward
Normally Closed CN,1 1 Reverse Forward Forward

Chapter 6 Programming Motion = 116 DMC-40x0 User Manual

Example: Homing

Instruction Interpretation
#HOME Label

CN, -1 Configure the polarity of the home input
AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search
HM Home

BG Begin Motion

AM After Complete

MG “AT HOME” Send Message

EN End

Figure 6.22 shows the velocity profile from the homing sequence of the example program above. For this profile,

the switch is normally closed and CN,-1.

HOME
SWITCH

_HMX=0

_HMX=1

VELOCITY

MOTION
BEGINS IN
FORWARD
DIRECTION

—

POSITION

VELOCITY

MOTION
CHANGES
DIRECTION

=

POSITION

POSITION

VELOCITY

MOTION IN
FORWARD
DIRECTION
TOWARD
INDEX

INDEX PULSES

POSITION

Figure 6.22: Homing Sequence for Normally Closed Switch and CN,-1

Example: Find Edge

#EDGE Label

AC 2000000 Acceleration rate
DC 2000000 Deceleration rate
SP 8000 Speed

FE Find edge command
BG Begin motion

AM After complete

MG “FOUND HOME” Send message

DP 0 Define position as 0
EN End

POSITION

DMC-40x0 User Manual

Chapter 6 Programming Motion = 117

Command Summary - Homing Operation

Command Description

FE XYZW Find Edge Routine. This routine monitors the Home Input

FI XYZW Find Index Routine - This routine monitors the Index Input

HM XYZW Home Routine - This routine combines FE and Fl as Described Above
SC XYZW

TS XYZW Tell Status of Switches and Inputs

Operand Summary - Homing Operation

Operand Description

_HMx Contains the value of the state of the Home Input
_SCx Contains stop code

_TSx Contains status of switches and inputs

High Speed Position Capture (The Latch Function)

Often it is desirable to capture the position precisely for registration applications. Position capture can be
programmed to latch on either a corresponding input (see Table 6.21) or on the index pulse for that axis. The
position can be captured for either the main or auxiliary encoder within 25 microseconds of an high-to-low

transition.
Input 1 A-axis latch Input 9 E-axis latch
Input 2 B-axis latch Input 10 F-axis latch
Input 3 C-axis latch Input 11 G-axis latch
Input 4 D-axis latch Input 12 H-axis latch
Table 6.21: Inputs and corresponding axis latch
NOTE Latching is not valid with sampled feedback types such as: SSI, BiSS, Sin/Cos, and Analog

To insure a position capture within 25 microseconds, the input signal must be a transition from high to low. Low to

high transitions may have greater delay.

The software commands, AL and RL, are used to arm the latch and report the latched position respectively. The
latch must be re-armed after each latching event. See the Command Reference for more details on these

commands.

Chapter 6 Programming Motion = 118

DMC-40x0 User Manual

Chapter 7 Application Programming

Overview

The DMC-40x0 provides a powerful programming language that allows users to customize the controller for their
particular application. Programs can be downloaded into the DMC-40x0 memory freeing the host computer for
other tasks. However, the host computer can send commands to the controller at any time, even while a program
is being executed. Only ASCIl commands can be used for application programming.

In addition to standard motion commands, the DMC-40x0 provides commands that allow the DMC-40x0 to make
its own decisions. These commands include conditional jumps, event triggers and subroutines. For example, the
command JPHLOOP, n<10 causes a jump to the label #LOOP if the variable n is less than 10.

For greater programming flexibility, the DMC-40x0 provides user-defined variables, arrays and arithmetic functions.
For example, with a cut-to-length operation, the length can be specified as a variable in a program which the
operator can change as necessary.

The following sections in this chapter discuss all aspects of creating applications programs. The program memory
size is 80 characters x 2000 lines.

Program Format

A DMC-40x0 program consists of DMC instructions combined to solve a machine control application. Action
instructions, such as starting and stopping motion, are combined with Program Flow instructions to form the
complete program. Program Flow instructions evaluate real-time conditions, such as elapsed time or motion
complete, and alter program flow accordingly.

Each DMC-40x0 instruction in a program must be separated by a delimiter. Valid delimiters are the semicolon (;) or
carriage return. The semicolon is used to separate multiple instructions on a single program line where the
maximum number of instructions on a line is limited by 80 characters. A carriage return enters the final command
on a program line.

Using Labels in Programs

All DMC-40x0 programs must begin with a label and end with an End (EN) statement. Labels start with the pound
(#) sign followed by a maximum of seven characters. The first character must be a letter; after that, numbers are
permitted. Spaces are not permitted in label.

The maximum number of labels which may be defined is 510.

Valid labels
#BEGIN
#SQUARE

DMC-40x0 User Manual Chapter 7 Application Programming = 119

#x1
#BEGIN1

Invalid labels
#1lSquare
#123

A Simple Example Program:

#START Beginning of the Program

PR 10000,20000 Specify relative distances on X and Y axes
BG XY Begin Motion

AM Wait for motion complete

WT 2000 Wait 2 sec

JP #START Jump to label START

EN End of Program

The above program moves X and Y 10000 and 20000 units. After the motion is complete, the motors rest for 2
seconds. The cycle repeats indefinitely until the stop command is issued.

Special Labels

The DMC-40x0 have some special labels, which are used to define input interrupt subroutines, limit switch
subroutines, error handling subroutines, and command error subroutines. See section on

#AMPERR Label for Amplifier error routine

#AUTO Label that will automatically run upon the controller exiting a reset (power-on)
#AUTOERR Label that will automatically run if there is an EEPROM error out of reset
#CMDERR Label for incorrect command subroutine

#COMINT Label for Communications Interrupt (See CC Command)

#ININT Label for Input Interrupt subroutine (See Il Command)

#LIMSWI Label for Limit Switch subroutine

#MCTIME Label for timeout on Motion Complete trippoint

#POSERR Label for excess Position Error subroutine

#TCPERR Label for errors over a TCP connection (error code 123)

Commenting Programs

Using the command, NO or Apostrophe (‘)

The DMC-40x0 provides a command, NO, for commenting programs or single apostrophe. This command allows
the user to include up to 78 characters on a single line after the NO command and can be used to include
comments from the programmer as in the following example:

#PATH

' 2-D CIRCULAR PATH

VMXY

‘" VECTOR MOTION ON X AND Y
VS 10000

‘' VECTOR SPEED IS 10000

VP -4000,0

‘" BOTTOM LINE

CR 1500,270,-180

‘" HALF CIRCLE MOTION
VP 0,3000

‘' TOP LINE

CR 1500,90,-180

‘" HALF CIRCLE MOTION
VE

' END VECTOR SEQUENCE
BGS

' BEGIN SEQUENCE MOTION
EN

‘" END OF PROGRAM

Chapter 7 Application Programming = 120 DMC-40x0 User Manual

Note: The NO command is an actual controller command. Therefore, inclusion of the NO commands will require
process time by the controller.

Difference between NO and ' using the GalilTools software

The GalilTools software will treat an apostrophe (') commend different from an NO when the compression
algorithm is activated upon a program download (line > 80 characters or program memory > 2000 lines). In this
case the software will remove all (') comments as part of the compression and it will download all NO comments to
the controller.

Executing Programs - Multitasking

The DMC-40x0 can run up to 8 independent programs simultaneously. These programs are called threads and are
numbered 0 through 7, where 0 is the main thread. Multitasking is useful for executing independent operations
such as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:
1. Only the main thread, thread 0, may use the input command, IN.

2. When input interrupts are implemented for limit switches, position errors or command errors, the
subroutines are executed as thread 0.

To begin execution of the various programs, use the following instruction:
XQ #A, n
Where n indicates the thread number. To halt the execution of any thread, use the instruction

HX n
where n is the thread number.
Note that both the XQ and HX commands can be performed by an executing program.

The example below produces a waveform on Output 1 independent of a move.

#TASK1 Task1 label

ATO Initialize reference time

CB1 Clear Output 1

#LOOP1 Loop1 label

AT 10 Wait 10 msec from reference time
SB1 Set Output 1

AT -40 Wait 40 msec from reference time, then initialize reference
CB1 Clear Output 1

JP #LOOP1 Repeat Loopl

#TASK2 Task2 label

XQ #TASK1,1 Execute Task1

#LOOP2 Loop?2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,QIN[2]=1 Repeat motion unless Input 2 is low
HX Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main thread (i.e.
Thread 0). #TASK1 is executed within TASK2.

DMC-40x0 User Manual Chapter 7 Application Programming = 121

Debugging Programs

The DMC-40x0 provides commands and operands which are useful in debugging application programs. These
commands include interrogation commands to monitor program execution, determine the state of the controller
and the contents of the controllers program, array, and variable space. Operands also contain important status
information which can help to debug a program.

Trace Commands

The trace command causes the controller to send each line in a program to the host computer immediately prior to
execution. Tracing is enabled with the command, TR1. TRO turns the trace function off. Note: When the trace
function is enabled, the line numbers as well as the command line will be displayed as each command line is
executed.

NOTE: When the trace function is enabled, the line numbers as well as the command line will be displayed as each
command line is executed.

Data which is output from the controller is stored in the output UART. The UART buffer can store up to 512
characters of information. In normal operation, the controller places output into the FIFO buffer. When the trace
mode is enabled, the controller will send information to the UART buffer at a very high rate. In general, the UART
will become full because the hardware handshake line will halt serial data until the correct data is read. When the
UART becomes full, program execution will be delayed until it is cleared. If the user wants to avoid this delay, the
command CW,1 can be given. This command causes the controller to throw away the data which can not be placed
into the FIFO. In this case, the controller does not delay program execution.

Error Code Command

When there is a program error, the DMC-40x0 halts the program execution at the point where the error occurs. To
display the last line number of program execution, issue the command, MG _ED.

The user can obtain information about the type of error condition that occurred by using the command, TC1. This
command reports back a number and a text message which describes the error condition. The command, TCO or
TC, will return the error code without the text message. For more information about the command, TC, see the
Command Reference.

Stop Code Command

The status of motion for each axis can be determined by using the stop code command, SC. This can be useful
when motion on an axis has stopped unexpectedly. The command SC will return a number representing the
motion status. See the command reference for further information.

RAM Memory Interrogation Commands

For debugging the status of the program memory, array memory, or variable memory, the DMC-40x0 has several
useful commands. The command, DM ?, will return the number of array elements currently available. The
command, DA ?, will return the number of arrays which can be currently defined. For example, a standard DMC-
14010 will have a maximum of 16000 array elements in up to 30 arrays. If an array of 100 elements is defined, the
command DM ? will return the value 15900 and the command DA ? will return 29.

To list the contents of the variable space, use the interrogation command LV (List Variables). To list the contents of
array space, use the interrogation command, LA (List Arrays). To list the contents of the Program space, use the
interrogation command, LS (List). To list the application program labels only, use the interrogation command, LL
(List Labels).

Chapter 7 Application Programming = 122 DMC-40x0 User Manual

Operands

In general, all operands provide information which may be useful in debugging an application program. Below is a
list of operands which are particularly valuable for program debugging. To display the value of an operand, the
message command may be used. For example, since the operand, _ED contains the last line of program execution,
the command MG _ED will display this line number.

_ED contains the last line of program execution. Useful to determine where program stopped.

_DL contains the number of available labels.

_UL contains the number of available variables.

_DA contains the number of available arrays.

_DM contains the number of available array elements.

_AB contains the state of the Abort Input

_LFx contains the state of the forward limit switch for the ‘x” axis

_LRx contains the state of the reverse limit switch for the x’ axis

Debugging Example:

The following program has an error. It attempts to specify a relative movement while the X-axis is already in
motion. When the program is executed, the controller stops at line 003. The user can then query the controller
using the command, TC1. The controller responds with the corresponding explanation:

Download Code

#A Program Label
PR1000 Position Relative 1000
BGX Begin

PR5000 Position Relative 5000
EN End

From Terminal

:XQ #A Execute #A

2003 PR5000 Error on Line 3

:TC1 Tell Error Code

?7 Command not valid Command not valid while running
while running.

Change the BGX line to BGX;AMX and re-download the program.
:XQ #A Execute #A

Program Flow Commands

The DMC-40x0 provides instructions to control program flow. The controller program sequencer normally executes
program instructions sequentially. The program flow can be altered with the use of event triggers, trippoints, and
conditional jump statements.

Event Triggers & Trippoints

To function independently from the host computer, the DMC-40x0 can be programmed to make decisions based on
the occurrence of an event. Such events include waiting for motion to be complete, waiting for a specified amount
of time to elapse, or waiting for an input to change logic levels.

The DMC-40x0 provides several event triggers that cause the program sequencer to halt until the specified event
occurs. Normally, a program is automatically executed sequentially one line at a time. When an event trigger
instruction is decoded, however, the actual program sequence is halted. The program sequence does not continue
until the event trigger is “tripped”. For example, the motion complete trigger can be used to separate two move
sequences in a program. The commands for the second move sequence will not be executed until the motion is
complete on the first motion sequence. In this way, the controller can make decisions based on its own status or
external events without intervention from a host computer.

DMC-40x0 User Manual Chapter 7 Application Programming = 123

DMC-40x0 Event Triggers

Command

Function

AMXYZWorS
(ABCDEFGH)

Halts program execution until motion is complete on the
specified axes or motion sequence(s). AM with no parameter
tests for motion complete on all axes. This command is useful
for separating motion sequences in a program.

AD XorYorZorW
(AorBorCorDorEorForGorH)

Halts program execution until position command has reached
the specified relative distance from the start of the move.
Only one axis may be specified at a time.

AR XorYorZorW
(AorBorCorDorEorForGorH)

Halts program execution until after specified distance from
the last AR or AD command has elapsed. Only one axis may
be specified at a time.

(AorBorCorDorEorForGorH)

AP XorYorZorW Halts program execution until after absolute position occurs.
(AorBorCorDorEorForGorH) Only one axis may be specified at a time.
MF XorYorZorW Halt program execution until after forward motion reached

absolute position. Only one axis may be specified. If position
is already past the point, then MF will trip immediately. Will
function on geared axis or aux. inputs.

MR XorYorZorW
(AorBorCorDorEorForGorH)

Halt program execution until after reverse motion reached
absolute position. Only one axis may be specified. If position
is already past the point, then MR will trip immediately. Will
function on geared axis or aux. inputs.

MCXorYorZorW
(AorBorCorDorEorForGorH)

Halt program execution until after the motion profile has
been completed and the encoder has entered or passed the
specified position. TW x,y,z,w sets timeout to declare an
error if not in position. If timeout occurs, then the trippoint
will clear and the stop code will be set to 99. An application
program will jump to label #MCTIME.

Halts program execution until after specified input is at
specified logic level. n specifies input line. Positive is high
logic level, negative is low level. n=1 through 8 for DMC-
4010, 4020, 4030, 4040. n=1 through 16 for DMC-4050,
4060, 4070, 4080

Also n=17-48

ASXYZWS
(ABCDEFGH)

Halts program execution until specified axis has reached its
slew speed.

AT £n,m

For m=omitted or 0, halts program execution until n msec
from reference time. AT O sets reference. AT n waits n msec
from reference. AT -n waits n msec from reference and sets
new reference after elapsed time.

For m=1. Same functionality except that n is number of
samples rather than msec

AV n

Halts program execution until specified distance along a
coordinated path has occurred.

WT n,m

For m=omitted or 0, halts program execution until specified
time in msec has elapsed.

For m=1. Same functionality except that n is number of
samples rather than msec.

Event Trigger Examples:

Event Trigger - Multiple Move Sequence

#TWOMOVE; ' Label

PR 2000;"' Position Command

BGX; ' Begin Motion

AMX; ' Wait for Motion Complete
PR 4000;" Next Position Move

BGX; ' Begin 2™ move

EN; ' End program

The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for the second
PR command because a new PR cannot be given until motion is complete.

Chapter 7 Application Programming = 124

DMC-40x0 User Manual

Event Trigger - Set Output after Distance

Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is the

speed multiplied by the sample period.

#SETBIT; ' Label

SP 10000;" Speed is 10000

PA 20000;"' Specify Absolute position
BGX; ' Begin motion

AD 1000;" Wait until 1000 counts
SB1;' Set output bit 1

EN; ' End program

Event Trigger - Repetitive Position Trigger

To set the output bit every 10000 counts during a move, the AR trippoint is used as shown in the next example.

#TRIP; ' Label

JG 50000;"' Specify Jog Speed
BGX;n=0;" Begin Motion
#REPEAT; ' # Repeat Loop

AR 10000;" Wait 10000 counts
TPX; ' Tell Position
SB1;!' Set output 1
WT50; " Wait 50 msec
CB1;' Clear output 1
n=n+1;"' Increment counter
JP #REPEAT,n<5;' Repeat 5 times
STX; ' Stop

EN; ' End

Event Trigger - Start Motion on Input

This example waits for input 1 to go low and then starts motion. Note: The Al command actually halts execution of
the program until the input occurs. If you do not want to halt the program sequences, you can use the Input
Interrupt function (Il) or use a conditional jump on an input, such as JP#GO,@IN[1] = 1.

#INPUT; ' Program Label
AI-1;" Wait for input 1 low
PR 10000;"' Position command
BGX; ' Begin motion

EN; ' End program

Event Trigger - Set output when At speed

#ATSPEED; ' Program Label

JG 50000;"' Specify jog speed

AC 10000;" Acceleration rate

BGX; ' Begin motion

ASX; ' Wait for at slew speed 50000
SB1;' Set output 1

EN; ' End program

Event Trigger - Change Speed along Vector Path

The following program changes the feed rate or vector speed at the specified distance along the vector. The vector

distance is measured from the start of the move or from the last AV command.

#VECTOR; ' Label

VMXY;VS 5000;"' Coordinated path
VP 10000,20000;" Vector position

VP 20000,30000;"' Vector position

VE; ' End vector

BGS; ' Begin sequence

AV 5000;" After vector distance
VS 1000;"' Reduce speed

EN; ' End

DMC-40x0 User Manual

Chapter 7 Application Programming = 125

Event Trigger - Multiple Move with Wait

This example makes multiple relative distance moves by waiting for each to be complete before executing new

moves.
#MOVES; ' Label
PR 12000;" Distance
SP 20000;" Speed
AC 100000;" Acceleration
BGX; ' Start Motion
AD 10000;" Wait a distance of 10,000 counts
SP 5000;"' New Speed
AMX; ' Wait until motion is completed
WT 200;" Wait 200 ms
PR -10000;" New Position
SP 30000;" New Speed
AC 150000;" New Acceleration
BGX; ' Start Motion
EN; ' End

Define Output Waveform Using AT

The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats every 50

msec.
#OUTPUT; ' Program label
ATO; ' Initialize time reference
SB1;' Set Output 1
#LOOP; ' Loop
AT 10;' After 10 msec from reference,
CB1;' Clear Output 1
AT -40;' Wait 40 msec from reference and reset reference
SB1;' Set Output 1
JP #LOOP; ' Loop
EN; ' End Program

Using AT/WT with non-default TM rates

By default both WT and AT are defined to hold up program execution for 'n' number of milliseconds (WT n or AT n).
The second field of both AT and WT can be used to have the program execution be held-up for 'n' number of
samples rather than milliseconds. For example WT 400 or WT 400,0 will hold up program execution for 400 msec
regardless of what is set for TM. By contrast WT 400,1 will hold up program execution for 400 samples. For the
default TM of 1000 the servo update rate is 976us per sample, so the difference between WT n,0 and WT n,1 is
minimal. The difference comes when the servo update rate is changed. With a low servo update rate, it is often
useful to be able to time loops based upon samples rather than msec, and this is where the “unscaled” WT and AT

are useful. For example:

#MAIN; ' Label

™ 250;"' 250us update rate

#MOVE; ' Label

PRX=1000;" Position Relative Move
BGX; ' Begin Motion

MCX; ' Wait for motion to complete
WT 2,1;"' Wait 2 samples (500us)
SB1;' Set bit 1

EN; ' End Program

In the above example, without using an unscaled WT, the output would either need to be set directly after the
motion was complete, or 2 ms after the motion was complete. By using WT n,1 and a lower TM, greater delay

resolution was achieved.

Chapter 7 Application Programming = 126

DMC-40x0 User Manual

Conditional Jumps

The DMC-40x0 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for branching
to a new program location based on a specified condition. The conditional jump determines if a condition is
satisfied and then branches to a new location or subroutine. Unlike event triggers, the conditional jump instruction
does not halt the program sequence. Conditional jumps are useful for testing events in real-time. They allow the
controller to make decisions without a host computer. For example, the DMC-40x0 can decide between two
motion profiles based on the state of an input line.

Command Format - JP and JS

FORMAT DESCRIPTION

JS destination, logical condition | Jump to subroutine if logical condition is satisfied

JP destination, logical condition | Jump to location if logical condition is satisfied

The destination is a program line number or label where the program sequencer will jump if the specified condition
is satisfied. Note that the line number of the first line of program memory is 0. The comma designates “IF”. The
logical condition tests two operands with logical operators.

Logical operators:

OPERATOR DESCRIPTION

< less than

> greater than

= equal to

<= less than or equal to
>= greater than or equal to
<> not equal

Conditional Statements

The conditional statement is satisfied if it evaluates to any value other than zero. The conditional statement can be
any valid DMC-40x0 numeric operand, including variables, array elements, numeric values, functions, keywords,
and arithmetic expressions. If no conditional statement is given, the jump will always occur.

Examples:

Number vl=6

Numeric Expression vl=v7*6
@ABS[v1]1>10

Array Element vl<count [2]

Variable vi<v2

Internal Variable _TPX=0
_TVX>500

1/O V1>QAN[2]
@IN[1]=0

Multiple Conditional Statements

The DMC-40x0 will accept multiple conditions in a single jump statement. The conditional statements are
combined in pairs using the operands “&” and “|”. The “&” operand between any two conditions, requires that
both statements must be true for the combined statement to be true. The “|” operand between any two
conditions, requires that only one statement be true for the combined statement to be true.

Note: Each condition must be placed in parentheses for proper evaluation by the controller. In addition, the DMC-
40x0 executes operations from left to right. See Mathematical and Functional Expressions for more information.

For example, using variables named v1, v2, v3 and v4:
JP #TEST, ((v1<v2) & (v3<v4))

DMC-40x0 User Manual Chapter 7 Application Programming = 127

In this example, this statement will cause the program to jump to the label #TEST if v1 is less than v2 and v3 is less
than v4. To illustrate this further, consider this same example with an additional condition:

JP #TEST, ((vl<v2) & (v3<v4d)) | (v5<ve)

This statement will cause the program to jump to the label #TEST under two conditions; 1. If v1 is less than v2 and
v3is less than v4. OR 2. If v5 is less than v6.

Using the JP Command:

If the condition for the JP command is satisfied, the controller branches to the specified label or line number and
continues executing commands from this point. If the condition is not satisfied, the controller continues to execute
the next commands in sequence.

Conditional Meaning

JP #Loop, count<10 Jump to #Loop if the variable, count, is less than 10

JS #MOVE2,Q@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After the subroutine MOVE2 is executed, the
program sequencer returns to the main program location where the subroutine was called.

JP #BLUE, @ABS[v2]>2 Jump to #BLUE if the absolute value of variable, v2, is greater than 2

JP #C,v1*vT<=v8*v2 Jump to #C if the value of v1 times v7 is less than or equal to the value of v8*v2

JP#A Jump to #A

Example Using JP command:

Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between moves.

#BEGIN Begin Program
count=10 Initialize loop counter
#LOOP Begin loop

PA 1000 Position absolute 1000
BGX Begin move

AMX Wait for motion complete
WT 100 Wait 100 msec

PA 0 Position absolute 0

BGX Begin move

AMX Wait for motion complete
WT 100 Wait 100 msec
count=count-1 Decrement loop counter
JP #LOOP, count>0 Test for 10 times thru loop
EN End Program

Using If, Else, and Endif Commands

The DMC-40x0 provides a structured approach to conditional statements using IF, ELSE and ENDIF commands.

Using the IF and ENDIF Commands

An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF command has as
it’s arguments one or more conditional statements. If the conditional statement(s) evaluates true, the command
interpreter will continue executing commands which follow the IF command. If the conditional statement
evaluates false, the controller will ignore commands until the associated ENDIF command is executed OR an ELSE
command occurs in the program (see discussion of ELSE command below).

Note: An ENDIF command must always be executed for every IF command that has been executed. It is
recommended that the user not include jump commands inside IF conditional statements since this causes re-
direction of command execution. In this case, the command interpreter may not execute an ENDIF command.

Using the ELSE Command

The ELSE command is an optional part of an IF conditional statement and allows for the execution of command
only when the argument of the IF command evaluates False. The ELSE command must occur after an IF command

Chapter 7 Application Programming = 128 DMC-40x0 User Manual

and has no arguments. If the argument of the IF command evaluates false, the controller will skip commands until
the ELSE command. If the argument for the IF command evaluates true, the controller will execute the commands
between the IF and ELSE command.

Nesting IF Conditional Statements

The DMC-40x0 allows for IF conditional statements to be included within other IF conditional statements. This
technique is known as ‘nesting’ and the DMC-40x0 allows up to 255 IF conditional statements to be nested. This is
a very powerful technique allowing the user to specify a variety of different cases for branching.

Command Format - IF, ELSE and ENDIF

Description

Format:

IF conditional statement(s) Execute commands proceeding IF command (up to ELSE command) if
conditional statement(s) is true, otherwise continue executing at ENDIF

command or optional ELSE command.

ELSE Optional command. Allows for commands to be executed when argument of
IF command evaluates not true. Can only be used with IF command.
ENDIF Command to end IF conditional statement. Program must have an ENDIF

command for every IF command.

Example using IF, ELSE and ENDIF:

#TEST Begin Main Program “TEST”

11,,3 Enable input interrupts on input 1 and input 2

MG “WAITING FOR INPUT 1, INPUT 27 Output message

#1L.OOP Label to be used for endless loop

JP #LOOP Endless loop

EN End of main program

#ININT Input Interrupt Subroutine

IF (QIN[1]=0) IF conditional statement based on input 1

IF (QIN[2]=0) 2" IF conditional statement executed if 1° IF conditional true

MG “INPUT 1 AND INPUT 2 ARE ACTIVE”
ELSE
MG “ONLY INPUT 1 IS ACTIVE

Message to be executed if 2™ IF conditional is true
ELSE command for 2™ IF conditional statement
Message to be executed if 2™ IF conditional is false

ENDIF End of 2™ conditional statement

ELSE ELSE command for 1* IF conditional statement

MG”ONLY INPUT 2 IS ACTIVE” Message to be executed if 1" IF conditional statement is false

ENDIF End of 1* conditional statement

#WAIT Label to be used for a loop

JP#WAIT, (RIN[1]=0) | (@IN[2]=0) Loop until both input 1 and input 2 are not active

RIO End Input Interrupt Routine without restoring trippoints
Subroutines

A subroutine is a group of instructions beginning with a label and ending with an end command (EN). Subroutines
are called from the main program with the jump subroutine instruction JS, followed by a label or line number, and
conditional statement. Up to 8 subroutines can be nested. After the subroutine is executed, the program
sequencer returns to the program location where the subroutine was called unless the subroutine stack is
manipulated as described in the following section.

Example:

An example of a subroutine to draw a square 500 counts per side is given below. The square is drawn at vector
position 1000,1000.

DMC-40x0 User Manual Chapter 7 Application Programming = 129

#M Begin Main Program

CB1 Clear Output Bit 1 (pick up pen)
VP 1000,1000;LE;BGS Define vector position; move pen
AMS Wait for after motion trippoint
SB1 Set Output Bit 1 (put down pen)
JS #Square;CBl Jump to square subroutine

EN End Main Program

#Square Square subroutine
v1=500;JS #L Define length of side
vl=-v1;JS #L Switch direction

EN End subroutine

#L;PR v1,v1;BGX Define X,Y; Begin X

AMX; BGY; AMY After motion on X, Begin Y

EN End subroutine

Stack Manipulation

It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS instruction, interrupt or
automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine stack is incremented by 1. Normally
the stack is restored with an EN instruction. Occasionally it is desirable not to return back to the program line
where the subroutine or interrupt was called. The ZS1 command clears 1 level of the stack. This allows the
program sequencer to continue to the next line. The ZSO command resets the stack to its initial value. For
example, if a limit occurs and the #LIMSWI routine is executed, it is often desirable to restart the program sequence
instead of returning to the location where the limit occurred. To do this, give a ZS command at the end of the
#LIMSWI routine.

Auto-Start Routine

The DMC-40x0 has a special label for automatic program execution. A program which has been saved into the
controller’s non-volatile memory can be automatically executed upon power up or reset by beginning the program
with the label #AUTO. The program must be saved into non-volatile memory using the command, BP.

Automatic Subroutines for Monitoring Conditions

Often it is desirable to monitor certain conditions continuously without tying up the host or DMC-40x0 program
sequences. The controller can monitor several important conditions in the background. These conditions include
checking for the occurrence of a limit switch, a defined input, position error, or a command error. Automatic
monitoring is enabled by inserting a special, predefined label in the applications program. The pre-defined labels

are:
SUBROUTINE DESCRIPTION
#LIMSWI Limit switch on any axis goes low
#ININT Input specified by Il goes low
#POSERR Position error exceeds limit specified by ER
#MCTIME Motion Complete timeout occurred. Timeout period set by TW command
#CMDERR Bad command given
#AUTO Automatically executes on power up
#AUTOERR Automatically executes when a checksum is encountered during #AUTO start-

up. Check error condition with _RS.

bit 0 for variable checksum error

bit 1 for parameter checksum error

bit 2 for program checksum error

bit 3 for master reset error (there should be no program)
#AMPERR Error from internal Galil amplifier

Chapter 7 Application Programming = 130 DMC-40x0 User Manual

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position error limit.
The commands in the #POSERR subroutine could decode which axis is in error and take the appropriate action. In
another example, the #ININT label could be used to designate an input interrupt subroutine. When the specified
input occurs, the program will be executed automatically.

NOTE: An application program must be running for #CMDERR to function.

Example - Limit Switch:

This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSW!I routine to function,
the DMC-40x0 must be executing an applications program from memory. This can be a very simple program that
does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion commands, such as JG 5000 can still
be sent from the PC even while the “dummy” applications program is being executed.

#LOOP

JP #LOOP;EN

#LIMSWI

MG “LIMIT OCCURRED”
RE

:XQ #LOOP
:JG 5000
:BGX

Dummy Program

Jump to Loop

Limit Switch Label

Print Message

Return to main program
Download Program
Execute Dummy Program
Jog

Begin Motion

Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

Notes regarding the #LIMSWI Routine:

1) The RE command is used to return from the #LIMSWI subroutine.
2) The #LIMSWI subroutine will be re-executed if the limit switch remains active.

The #LIMSWI routine is only executed when the motor is being commanded to move.

Example - Position Error

#LOOP

JP #LOOP;EN

#POSERR

vl=_ TEX

MG “EXCESS POSITION ERROR”
MG “ERROR=",vl=

RE

:XQ #LOOP
:JG 100000
:BGX

Example - Input Interrupt

#A

IIl

JG 30000,,,60000
BGXW

#LOOP; JP#LOOP; EN
#ININT

STXW; AM

#TEST; JP #TEST,
JGc 30000,,,6000
BGXW

RIO

@IN[1]=0

Dummy Program
Loop

Position Error Routine
Read Position Error
Print Message

Print Error

Return from Error
Download program
Execute Dummy Program
Jog at High Speed
Begin Motion

Label

Input Interrupt on 1
Jog

Begin Motion

Loop

Input Interrupt

Stop Motion

Test for Input 1 still low
Restore Velocities
Begin motion

Return from interrupt routine to Main Program and do not re-enable trippoints

DMC-40x0 User Manual

Chapter 7 Application Programming = 131

Example - Motion Complete Timeout

#BEGIN
TW 1000
PA 10000
BGX

MCX

EN
#MCTIME

MG “X fell short”

EN

Begin main program

Set the time out to 1000 ms
Position Absolute command
Begin motion

Motion Complete trippoint
End main program

Motion Complete Subroutine
Send out a message

End subroutine

This simple program will issue the message “X fell short” if the X axis does not reach the commanded position
within 1 second of the end of the profiled move.

Example - Command Error

#BEGIN

speed = 2000
JG speed;BGX;
#LOOP

JG speed;WT100
JP #LOOP

EN

#CMDERR
JP#DONE, ED<>2
JP#DONE, TC<>6

MG “SPEED TOO HIGH”

MG “TRY AGAIN”
ZS1

JP #BEGIN
#DONE

ZS0

EN

Begin main program
Set variable for speed
Begin motion

Update Jog speed based upon speed variable

End main program
Command error utility
Check if error on line 2
Check if out of range
Send message

Send message

Adjust stack

Return to main program
End program if other error
Zero stack

End program

The above program prompts the operator to enter a jog speed. If the operator enters a number out of range
(greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

In multitasking applications, there is an alternate method for handling command errors from different threads.
Using the XQ command along with the special operands described below allows the controller to either skip or

retry invalid commands.

OPERAND FUNCTION

_EDI Returns the number of the thread that generated an error

_ED2 Retry failed command (operand contains the location of the failed command)

_ED3 Skip failed command (operand contains the location of the command after the failed
command)

The operands are used with the XQ command in the following format:

XQ_ED2 (or _ED3), ED1,1

Where the “1” at the end of the command line indicates a restart; therefore, the existing program stack will not be
removed when the above format executes.

The following example shows an error correction routine which uses the operands.

Chapter 7 Application Programming = 132

DMC-40x0 User Manual

Example - Command Error w/Multitasking

#A Begin thread 0 (continuous loop)
JP#A

EN End of thread 0

#B Begin thread 1

N=-1 Create new variable

KP N Set KP to value of N, an invalid value
TY Issue invalid command

EN End of thread 1

#CMDERR Begin command error subroutine
IF TC=6 If error is out of range (KP -1)
N=1 Set N to a valid number

XQ ED2, EDI1,1 Retry KP N command

ENDIF

IF TC=1 If error is invalid command (TY)
XQ _ED3,_EDI1,1 Skip invalid command

ENDIF

EN End of command error routine

Example - Communication Interrupt

A DMC-4010 is used to move the A axis back and forth from 0 to 10000. This motion can be paused, resumed and
stopped via input from an auxiliary port terminal.

#BEGIN Label for beginning of program

cC 9600,0,1,0 Setup communication configuration for auxiliary serial port
CI 2 Setup communication interrupt for auxiliary serial port
MG {P2}"Type 0 to stop motion" Message out of auxiliary port

MG {P2}"Type 1 to pause motion" Message out of auxiliary port

MG {P2}"Type 2 to resume motion" Message out of auxiliary port

rate=2000 Variable to remember speed

SPA=rate Set speed of A axis motion

#LOOP Label for Loop

PAA=10000 Move to absolute position 10000

BGA Begin Motion on A axis

AMA Wait for motion to be complete

PAA=0 Move to absolute position 0

BGA Begin Motion on A axis

AMA Wait for motion to be complete

JP #LOOP Continually loop to make back and forth motion

EN End main program

#COMINT Interrupt Routine

JP #STOP, P2CH="0Q" Check for S (stop motion)

JP #PAUSE,P2CH="1"
JP #RESUME, P2CH="2"

Check for P (pause motion)
Check for R (resume motion)

EN1,1 Do nothing

#STOP Routine for stopping motion

STA; ZS; EN Stop motion on A axis; Zero program stack; End Program
#PAUSE Routine for pausing motion

rate=_SPA Save current speed setting of A axis motion

SPA=0 Set speed of A axis to zero (allows for pause)

ENI, 1 Re-enable trippoint and communication interrupt
#RESUME Routine for resuming motion

SPA=rate Set speed on A axis to original speed

EN1,1 Re-enable trippoint and communication interrupt

For additional information, see section on Using Communication Interrupt.

Example — Ethernet Communication Error

This simple program executes in the DMC-40x0 and indicates (via the serial port) when a communication handle
fails. By monitoring the serial port, the user can re-establish communication if needed.

DMC-40x0 User Manual

Chapter 7 Application Programming = 133

#LOOP Simple program loop

JP#LOOP

EN

#TCPERR Ethernet communication error auto routine

MG {Pl}_TIA4 Send message to serial port indicating which handle did not
receive proper acknowledgment.

RE

Example — Amplifier Error

The program below will execute upon the detection of an error from an internal Galil Amplifier. The bits in TA1 will
be set for all axes that have an invalid hall state even if BR1 is set for those axes, this is handled with the mask
variable shown in the code below.

#AMPERR

REM mask out axes that are in brushed mode for TAl
mask=(_BRH*128)+(_BRG*64)+ (_BRF*32)+(BRE*16)+(BRD*8)+(BRC*4)+(BRB*2)+ BRA
mask=@COM[mask]

mask=((TAlsmask) &$0000FFFF)

LUO;’turn off auto update of LCD

REM amplifier error status on LCD

MG"A-ER TAO0"{Ll}, TAO{L2};WT2000

MG"A-ER TA1"{Ll},mask{L2};WT2000

MG"A-ER TA2"{L1l}, TA2{L2};WT2000

MG"A-ER TA3"{Ll}, TA3{L2};WT2000

LULl;’turn on Automatic Axis Update of LCD

WT5000

REM the sum of the amperr bits should be 0 with no amplifier error
er=_TAO+mask+ TA2+_ TA3

JP#AMPERR, er0

REM Notify user amperr has cleared

LUO

MG"AMPERR" {L1}, "RESOLVED" {L2}

WT3000

LUl

RE

JS Subroutine Stack Variables (*a, 7b, Ac, Ad, e, MM, Ag, Mh)

There are 8 variables that may be passed on the subroutine stack when using the JS command. Passing values on
the stack is advanced DMC programming, and is recommended for experienced DMC programmers familiar with
the concept of passing arguments by value and by reference.

Notes:

1. Passing parameters has no type checking, so it is important to exercise good programming style when
passing parameters. See examples below for recommended syntax.

2. Do not use spaces in expressions containing .

3. Global variables MUST be assigned prior to any use in subroutines where variables are passed by
reference.

4. Please refer to the JS command in the controller's command reference for further important information.

Example: A Simple Adding Function
#Add
JsS#suM(1,2,3,4,5,6,7,8)
MG JS
EN

#SUM
EN,, ("a+"b+"c+ d+ e+ f+"g+ h)

:Executed program from programl.dmc
36.0000

Chapter 7 Application Programming = 134 DMC-40x0 User Manual

Example: Variable, and an Important Note about Creating Global Variables
#Var
value=5
global=8
JS#SUM (&value,1,2,3,4,5,6,7)
MG value
MG JS
EN

#SUM
~a="b+"c+"d+"e+"f+"g+ h+global
EN,, "a

Executed program from program2.dmc
36.0000
36.0000

Example: Working with Arrays
#Array
DM speeds[8]
DM other[256]
JS#zeroAry ("speeds", 0)
JS#zeroAry ("other",0)
EN

#zeroAry

~a[*bl=0

~b="b+1

JP#zeroAry, ("b<*a[-1])
EN

Example: Abstracting Axes
#Axes
JS#runMove (0,10000,1000,100000,100000)
MG "Position:", JS
EN

#runMove

~a="a

PR~a="b
SP~a="c
AC~a="d
DC~a="e
BG~a

MC~a

EN,, TP~a

DMC-40x0 User Manual Chapter 7 Application Programming = 135

Example: Local Scope

#Local

JS#POWER (2, 2)

MG _JS

JS#POWER (2, 16)

MG_JS

JS#POWER (2, -8)

MG_JS

#POWER ; NO (ba
~c=1 ;'ung
IF "“b=0 ; 'spec
EN,,1

ENDIF

IF "b<0 ; 'specia
~d=1
~b=@ABS["b]

ELSE
~d=0

ENDIF

#PWRHLPR

~c="c*"a

~“b="b-1

JP#PWRHLER, ~b>0

IF ~d=1 ;'if inversion required
~c=(1/"c)

ENDIF

EN, , "c

exponent”b)

able

ri

exponent =

0, invert result

exponent

Executed program from programl.dmc
4.0000

65536.0000

0.0039

Example: Recursion
'although the stack depth is only 16, Gali DMC code does support recursion

JS#AxsInfo (0)

MG{Z2.0}"Recursed through ", JS," stacks"

EN

#AxsInfo ;NO (axis "a) List info for axes
~h="a

“b=("a+$41)*$1000000 ;'convert to Galil String

MG"b{S1l}, " Axis: "{N}
MG{F8.0}"Position: ", TP~h," Error:", TE~h," Torque:", TT~h{Fl.4}
IF ~a=7 ; 'recursion exit condition
EN,, 1

ENDIF
JS#AxsInfo (®a + 1)
EN,, JS+1

Executed program from programl.dmc

Axis: Position: 00029319 Error: 00001312 Torque: 9.9982

Axis: Position: -00001612 Error: 00000936 Torque: 1.7253
Axis: Position: 00001696 Error:-00001076 Torque:-1.9834

Axis: Position: -00002020 Error: 00001156 Torque: 2.1309
Axis: Position: 00000700 Error:-00001300 Torque:-2.3963

Axis: Position: 00000156 Error:-00000792 Torque:-1.4599

Axis: Position: -00002212 Error: 00001732 Torque: 3.1926
Axis: Position: 00002665 Error:-00001721 Torque:-3.1723

Recursed through 8 stacks

T OQMMEHEOOQD

Chapter 7 Application Programming = 136 DMC-40x0 User Manual

General Program Flow and Timing information

This section will discuss general programming flow and timing information for Galil programming.

REM vs. NO or ' comments

There are 2 ways to add comments to a .dmc program. REM statements or NO/ ' comments. The main difference
between the 2 is that REM statements are stripped from the program upon download to the controller and NO or'
comments are left in the program. In most instances the reason for using REM statements instead of NO or ' is to
save program memory. The other benefit to using REM commands comes when command execution of a loop,
thread or any section of code is critical. Although they do not take much time, NO and ' comments still take time to
process. So when command execution time is critical, REM statements should be used. The 2 examples below
demonstrate the difference in command execution of a loop containing comments.

The GalilTools software will treat an apostrophe (') comment different from an NO when the compression
algorithm is activated upon a program download (line > 80 characters or program memory > 2000 lines). In this
case the software will remove all (') comments as part of the compression and it will download all NO comments to
the controller.

Note: Actual processing time will vary depending upon number of axes, communication activity, number
of threads currently executing etc.

#a

i=0;'initialize a counter

t= TIME;' set an initial time reference
#loop

NO this comment takes time to process

'this